RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      정지 비행에서의 곤충 날개 궤적에 따른 공기역학적 특성

      한글로보기

      https://www.riss.kr/link?id=A76503433

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Insect flight is adapted to cope with each circumstance by controlling a variety of the parameters of wing motion in nature. Many researchers have struggled to solve the fundamental concept of insect flight, but it has not been solved yet clearly. In this study, to find the most effective flapping wing dynamics, we conducted to analyze CFD data on fixing some of the optimal parameters of wing motion such as stoke amplitude, flip duration and wing rotation type and then controlled the deviation angle by fabricating wing tip motion. Although all patterns have the similar value of lift coefficient and drag coefficient, pattern A(pear-shape type) indicates the highest lift coefficient and pattern H(pear-shape type) has the lowest lift coefficient among four wing tip motions and three deviation angles. This result suggest that the lift and drag coefficient depends on the angle of attack and the deviation angle combined, and it could be explained by delayed stall and wake capture effect.
      번역하기

      Insect flight is adapted to cope with each circumstance by controlling a variety of the parameters of wing motion in nature. Many researchers have struggled to solve the fundamental concept of insect flight, but it has not been solved yet clearly. In ...

      Insect flight is adapted to cope with each circumstance by controlling a variety of the parameters of wing motion in nature. Many researchers have struggled to solve the fundamental concept of insect flight, but it has not been solved yet clearly. In this study, to find the most effective flapping wing dynamics, we conducted to analyze CFD data on fixing some of the optimal parameters of wing motion such as stoke amplitude, flip duration and wing rotation type and then controlled the deviation angle by fabricating wing tip motion. Although all patterns have the similar value of lift coefficient and drag coefficient, pattern A(pear-shape type) indicates the highest lift coefficient and pattern H(pear-shape type) has the lowest lift coefficient among four wing tip motions and three deviation angles. This result suggest that the lift and drag coefficient depends on the angle of attack and the deviation angle combined, and it could be explained by delayed stall and wake capture effect.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. 본론
      • 3. 결과 및 고찰
      • 4. 결론
      • Abstract
      • 1. 서론
      • 2. 본론
      • 3. 결과 및 고찰
      • 4. 결론
      • 참고문헌
      더보기

      참고문헌 (Reference)

      1 Dickinson, M.H., "Wing Rotation and the Aerodynamics Basis of Insect Flight" 284 : 87-89, 1999

      2 Mao Sun, "Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing in Flapping Motion" 205 : 55-70, 2002

      3 Sane, S.P., "The Serodynamic of Insect Flight" 206 : 4191-4208, 2003

      4 Sane, S.P., "The Control of Flight Force by a Flapping Wing : Lift and Drag Production" 204 : 2607-2626, 2001

      5 Lehmann, F.-O., "The Aerodynamic Benefit of Wing-Wing Interaction Depends on Stroke Trajectory in Flapping Insect Wings" 210 : 1362-1377, 2007

      6 Yong-Ho Kim, "Numerical Study of Unsteady Aerodynamic Force Generated by Flapping of Drosophila" Yonsei University 2004

      7 Ellington, C.P., "Leading Edge Vortices in Insect Flight" 384 : 626-630, 1996

      8 Wang, Z.J., "Dissecting Insect Flight" 37 : 183-210, 2005

      1 Dickinson, M.H., "Wing Rotation and the Aerodynamics Basis of Insect Flight" 284 : 87-89, 1999

      2 Mao Sun, "Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing in Flapping Motion" 205 : 55-70, 2002

      3 Sane, S.P., "The Serodynamic of Insect Flight" 206 : 4191-4208, 2003

      4 Sane, S.P., "The Control of Flight Force by a Flapping Wing : Lift and Drag Production" 204 : 2607-2626, 2001

      5 Lehmann, F.-O., "The Aerodynamic Benefit of Wing-Wing Interaction Depends on Stroke Trajectory in Flapping Insect Wings" 210 : 1362-1377, 2007

      6 Yong-Ho Kim, "Numerical Study of Unsteady Aerodynamic Force Generated by Flapping of Drosophila" Yonsei University 2004

      7 Ellington, C.P., "Leading Edge Vortices in Insect Flight" 384 : 626-630, 1996

      8 Wang, Z.J., "Dissecting Insect Flight" 37 : 183-210, 2005

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.23 0.23 0.25
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.22 0.19 0.552 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼