RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      glyA Gene Knock-out in Escherichia coli Enhances L-serine Production without Glycine Addition

      한글로보기

      https://www.riss.kr/link?id=A105096671

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In E. coli, glyA encodes for serine hydroxymethyltransferase (SHMT), which converts L-serine to glycine. When engineering L-serine-producing strains, it is therefore favorable to inactivate glyA to prevent L-serine degradation. However, most glyA knockout strains exhibit slow cell growth because of the resulting lack of glycine and C1 units. To overcome this problem, we overexpressed the gcvTHP genes of the glycine cleavage system (GCV), to increase the C1 supply before glyA was knocked out.
      Subsequently, the kbl and tdh genes were overexpressed to provide additional glycine via the L-threonine degradation pathway, thus restoring normal cell growth independent of glycine addition. Finally, the plasmid pPK10 was introduced to overexpress pgk, serAΔ197, serC and serB, and the resulting strain E4G2 (pPK10) accumulated 266.3 mg/L of L-serine in a semi-defined medium without adding glycine, which was 3.18-fold higher than the production achieved by the control strain E3 (pPK10). This strategy can accordingly be applied to disrupt the L-serine degradation pathway in industrial production strains without causing negative side-effects, ultimately making L-serine production more efficient.
      번역하기

      In E. coli, glyA encodes for serine hydroxymethyltransferase (SHMT), which converts L-serine to glycine. When engineering L-serine-producing strains, it is therefore favorable to inactivate glyA to prevent L-serine degradation. However, most glyA knoc...

      In E. coli, glyA encodes for serine hydroxymethyltransferase (SHMT), which converts L-serine to glycine. When engineering L-serine-producing strains, it is therefore favorable to inactivate glyA to prevent L-serine degradation. However, most glyA knockout strains exhibit slow cell growth because of the resulting lack of glycine and C1 units. To overcome this problem, we overexpressed the gcvTHP genes of the glycine cleavage system (GCV), to increase the C1 supply before glyA was knocked out.
      Subsequently, the kbl and tdh genes were overexpressed to provide additional glycine via the L-threonine degradation pathway, thus restoring normal cell growth independent of glycine addition. Finally, the plasmid pPK10 was introduced to overexpress pgk, serAΔ197, serC and serB, and the resulting strain E4G2 (pPK10) accumulated 266.3 mg/L of L-serine in a semi-defined medium without adding glycine, which was 3.18-fold higher than the production achieved by the control strain E3 (pPK10). This strategy can accordingly be applied to disrupt the L-serine degradation pathway in industrial production strains without causing negative side-effects, ultimately making L-serine production more efficient.

      더보기

      참고문헌 (Reference)

      1 Kuhlman, T. E., "Site-specific chromosomal integration of large synthetic constructs" 38 : e92-, 2010

      2 Stolz, M., "Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum" 73 : 750-755, 2007

      3 Pizer, L. I., "Nutritional and regulatory aspects of serine metabolism in Escherichia coli" 88 : 611-619, 1964

      4 Lin, Z., "Metabolic engineering of Escherichia coli for the production of riboflavin" 13 : 104-, 2014

      5 Peters-Wendisch, P., "Metabolic engineering of Corynebacterium glutamicum for L-serine production" 71 : 7139-7144, 2005

      6 Zhu, Q., "L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum" 99 : 1665-1673, 2015

      7 Mundhada, H., "Increased production of L-serine in Escherichia coli through adaptive laboratory evolution" 39 : 141-150, 2017

      8 Plamann, M. D., "Escherichia coli K12 mutants defective in the glycine cleavage enzyme system" 192 : 15-20, 1983

      9 Hsiao, H. Y., "Enzymatic production of L-serine with a feedback control system for formaldehyde addition" 28 : 1510-1518, 1986

      10 Mundhada, H., "Engineering of high yield production of L?serine in Escherichia coli" 113 : 807-816, 2016

      1 Kuhlman, T. E., "Site-specific chromosomal integration of large synthetic constructs" 38 : e92-, 2010

      2 Stolz, M., "Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum" 73 : 750-755, 2007

      3 Pizer, L. I., "Nutritional and regulatory aspects of serine metabolism in Escherichia coli" 88 : 611-619, 1964

      4 Lin, Z., "Metabolic engineering of Escherichia coli for the production of riboflavin" 13 : 104-, 2014

      5 Peters-Wendisch, P., "Metabolic engineering of Corynebacterium glutamicum for L-serine production" 71 : 7139-7144, 2005

      6 Zhu, Q., "L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum" 99 : 1665-1673, 2015

      7 Mundhada, H., "Increased production of L-serine in Escherichia coli through adaptive laboratory evolution" 39 : 141-150, 2017

      8 Plamann, M. D., "Escherichia coli K12 mutants defective in the glycine cleavage enzyme system" 192 : 15-20, 1983

      9 Hsiao, H. Y., "Enzymatic production of L-serine with a feedback control system for formaldehyde addition" 28 : 1510-1518, 1986

      10 Mundhada, H., "Engineering of high yield production of L?serine in Escherichia coli" 113 : 807-816, 2016

      11 Zhang, Y., "Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli" 13 : 172-, 2014

      12 Hagishita, T., "Efficient l-serine production from methanol and glycine by resting cells of Methylobacterium sp. strain MN43" 60 : 1604-1607, 1996

      13 Zhang, X., "Deficiency in l-serine deaminase results in abnormal growth and cell division of Escherichia coli K-12" 69 : 870-881, 2008

      14 Gu, P., "Construction of an L-serine producing Escherichia coli via metabolic engineering" 41 : 1443-1450, 2014

      15 Li, Y., "Construction of Escherichia coli strains producing L-serine from glucose" 34 : 1525-1530, 2012

      16 Jiang, W., "Characterization of a serine hydroxymethyltransferase for L-serine enzymatic production from Pseudomonas plecoglossicida" 29 : 2067-2076, 2013

      17 Jiang, W., "A serine hydroxymethyltransferase from marine bacterium Shewanella algae: Isolation, purification, characterization and l-serine production" 168 : 477-484, 2013

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.14 0.13 0.75
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.57 0.46 0.239 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼