RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      악성코드 패킹유형 자동분류 기술 연구

      한글로보기

      https://www.riss.kr/link?id=A105631456

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      대부분의 침해공격은 악성코드를 통해 발생하고 있으며, 침해공격으로 인한 피해는 사물인터넷/사이버 물리 시스템과 연결되면서 사이버공간에만 국한되지 않고 실생활에 큰 위협이 되고 있다. 이에 따라, 다양한 악성코드 동적분석, 정적분석기술들이 연구되었는데, 악성코드 동적분석들은 결과적인 악성행위를 쉽게 확인할 수 있어 널리 사용되었으나 VM 환경탐지 시 동작하지 않는 anti-VM 악성코드가 증가하면서 어려움을 겪고 있고, 악성코드 정적분석 기술들은 코드자체를 해석할 수 있어 많은 정보를 얻을 수 있으나 난독화, 패킹 기술들이 적용되어 분석가를 어렵게 하고 있다. 본 논문에서는 정적분석기술의 주요 장애물인 난독화 유형을 자동식별, 분류하는 기술을 제안한다. 특히, 제안하는 모델을 통해 알려진 패커나 알려지지 않은 패커와 상관없이 일정한 기준에 의해 모든 악성코드를 분류할 수 있는 것이 가능하다. 악성코드 분류는 다양한 활용이 가능하지만, 예를 들면 악성코드 정적 feature에 기반하여 머신러닝 기반 분석을 할 때, 전체 파일에 대해 학습 및 분석하는 방식보다 악성코드 유형별 학습 및 분석이 더욱 효과적일 것이다. 이를 위해, PE구조에서 활용 가능한 feature에 대해 지도 학습 및 비지도 학습 방식의 모델을 설계했고, 98,000여개 샘플을 통해 결과 검증을 진행하였다.
      번역하기

      대부분의 침해공격은 악성코드를 통해 발생하고 있으며, 침해공격으로 인한 피해는 사물인터넷/사이버 물리 시스템과 연결되면서 사이버공간에만 국한되지 않고 실생활에 큰 위협이 되고 ...

      대부분의 침해공격은 악성코드를 통해 발생하고 있으며, 침해공격으로 인한 피해는 사물인터넷/사이버 물리 시스템과 연결되면서 사이버공간에만 국한되지 않고 실생활에 큰 위협이 되고 있다. 이에 따라, 다양한 악성코드 동적분석, 정적분석기술들이 연구되었는데, 악성코드 동적분석들은 결과적인 악성행위를 쉽게 확인할 수 있어 널리 사용되었으나 VM 환경탐지 시 동작하지 않는 anti-VM 악성코드가 증가하면서 어려움을 겪고 있고, 악성코드 정적분석 기술들은 코드자체를 해석할 수 있어 많은 정보를 얻을 수 있으나 난독화, 패킹 기술들이 적용되어 분석가를 어렵게 하고 있다. 본 논문에서는 정적분석기술의 주요 장애물인 난독화 유형을 자동식별, 분류하는 기술을 제안한다. 특히, 제안하는 모델을 통해 알려진 패커나 알려지지 않은 패커와 상관없이 일정한 기준에 의해 모든 악성코드를 분류할 수 있는 것이 가능하다. 악성코드 분류는 다양한 활용이 가능하지만, 예를 들면 악성코드 정적 feature에 기반하여 머신러닝 기반 분석을 할 때, 전체 파일에 대해 학습 및 분석하는 방식보다 악성코드 유형별 학습 및 분석이 더욱 효과적일 것이다. 이를 위해, PE구조에서 활용 가능한 feature에 대해 지도 학습 및 비지도 학습 방식의 모델을 설계했고, 98,000여개 샘플을 통해 결과 검증을 진행하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Most of the cyber attacks are caused by malicious codes. The damage caused by cyber attacks are gradually expanded to IoT and CPS, which is not limited to cyberspace but a serious threat to real life. Accordingly, various malicious code analysis techniques have been appeared. Dynamic analysis have been widely used to easily identify the resulting malicious behavior, but are struggling with an increase in Anti-VM malware that is not working in VM environment detection. On the other hand, static analysis has difficulties in analysis due to various packing techniques. In this paper, we proposed malware classification techniques regardless of known packers or unknown packers through the proposed model. To do this, we designed a model of supervised learning and unsupervised learning for the features that can be used in the PE structure, and conducted the results verification through 98,000 samples. It is expected that accurate analysis will be possible through customized analysis technology for each class.
      번역하기

      Most of the cyber attacks are caused by malicious codes. The damage caused by cyber attacks are gradually expanded to IoT and CPS, which is not limited to cyberspace but a serious threat to real life. Accordingly, various malicious code analysis techn...

      Most of the cyber attacks are caused by malicious codes. The damage caused by cyber attacks are gradually expanded to IoT and CPS, which is not limited to cyberspace but a serious threat to real life. Accordingly, various malicious code analysis techniques have been appeared. Dynamic analysis have been widely used to easily identify the resulting malicious behavior, but are struggling with an increase in Anti-VM malware that is not working in VM environment detection. On the other hand, static analysis has difficulties in analysis due to various packing techniques. In this paper, we proposed malware classification techniques regardless of known packers or unknown packers through the proposed model. To do this, we designed a model of supervised learning and unsupervised learning for the features that can be used in the PE structure, and conducted the results verification through 98,000 samples. It is expected that accurate analysis will be possible through customized analysis technology for each class.

      더보기

      목차 (Table of Contents)

      • 요약
      • ABSTRACT
      • I. 서론
      • II. 관련연구
      • III. 제안모델
      • 요약
      • ABSTRACT
      • I. 서론
      • II. 관련연구
      • III. 제안모델
      • IV. 실험결과
      • V. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 박창욱, "퍼지해시를 이용한 유사 악성코드 분류모델에 관한 연구" 한국정보보호학회 22 (22): 1325-1336, 2012

      2 문해은, "악성코드 및 패커 탐지를 이용한 공격 그룹 판별" 한국정보과학회 45 (45): 106-112, 2018

      3 전덕조, "머신 러닝(Machine Learning)기법을 활용한 실시간 악성파일 탐지 기법" 한국정보기술학회 16 (16): 101-113, 2018

      4 AV-TEST, "The AV-TEST security report 2016/2017" AV-TEST 2017

      5 Ho-dong Lee, "Structure and principles of windows system executable" Hanbit Media 2005

      6 U. Bayer, "Scalable, Behavior-based malware clustering" 9 : 8-11, 2009

      7 Ho-dong Lee, "Reverse engineering 1(file structure section)" Hanbit Media 2016

      8 권희준, "Multi N-gram을 이용한 악성코드 분류 시스템" 보안공학연구지원센터 9 (9): 531-542, 2012

      9 Kaspersky Lab, "Machine learning for malware detection" Kaspersky Lab 2017

      10 Seon-gyun Kim, "Design and Implementation of PE File Unpacking Automatic System for Malware Analysis" Kangwon National University 2018

      1 박창욱, "퍼지해시를 이용한 유사 악성코드 분류모델에 관한 연구" 한국정보보호학회 22 (22): 1325-1336, 2012

      2 문해은, "악성코드 및 패커 탐지를 이용한 공격 그룹 판별" 한국정보과학회 45 (45): 106-112, 2018

      3 전덕조, "머신 러닝(Machine Learning)기법을 활용한 실시간 악성파일 탐지 기법" 한국정보기술학회 16 (16): 101-113, 2018

      4 AV-TEST, "The AV-TEST security report 2016/2017" AV-TEST 2017

      5 Ho-dong Lee, "Structure and principles of windows system executable" Hanbit Media 2005

      6 U. Bayer, "Scalable, Behavior-based malware clustering" 9 : 8-11, 2009

      7 Ho-dong Lee, "Reverse engineering 1(file structure section)" Hanbit Media 2016

      8 권희준, "Multi N-gram을 이용한 악성코드 분류 시스템" 보안공학연구지원센터 9 (9): 531-542, 2012

      9 Kaspersky Lab, "Machine learning for malware detection" Kaspersky Lab 2017

      10 Seon-gyun Kim, "Design and Implementation of PE File Unpacking Automatic System for Malware Analysis" Kangwon National University 2018

      11 J. Saxe, "Deep neural network based malware detection using two dimensional binary program features" 11-20, 2015

      12 M.G. Schultz, "Data mining methods for detection of new malicious executables" 38-49, 2001

      13 D. Gibert, "Convolutional neural networks for malware classification" Universitat Politècnica de Catalunya 2016

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.41 0.41 0.43
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.45 0.4 0.508 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼