RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Study on High Density Scintillators and Multi-energy Windows for Improving I-131 Gamma Image Quality: Monte Carlo Simulation Approach

      한글로보기

      https://www.riss.kr/link?id=A106054090

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      An energy window with a gamma peak centered at 364 keV (86%) is usually used for I-131 imaging. However, the image performance indexes such as image count, scatter fraction (SF), spatial resolution (SR) obtained using a conventional gamma camera, which uses a 3/8-in sodium iodide scintillator, are poor mainly due to its low detection eciency. In this study, we investigated the feasibility of using a higher energy peak (637 and 723 keV) for the energy window to obtain a better imaging performance compared with the conventional I-131 imaging method. GATE (v7.0), which is based on Monte Carlo method, was used for performing simulations. A clinical gamma camera, SYMBIA-T2 (Siemens), was mounted on a NaI scintillator in the simulation. A GAGG scintillator was also realized for eective detection of high energy gamma, in addition to using high energy (HE) and ultrahigh energy (UHE) collimators. We obtained I-131 planar images through the conventionally used window method (364 keV 10%). The high-energy gamma ray of I 131 (637 and 723 keV) have been additionally used for improving image performance. The scatter correction method was applied to images for suppressing scatter due to high-energy gamma rays.
      Various indexes are used for validating image performance such as SR, SF, and contrast-to-noise ratio. High-energy gamma rays could be used to increase the image counts, but the other image performances were degraded compared to the scatter-corrected 364 keV images (SF of 6.33 - 27.73%; SR of 0.93 - 6.02%). The UHE collimator was useful in obtaining a better spatial resolution and suppressing scatter components compared with the HE collimator. However, it did not exhibit a sucient image performance to be considered as a replacement for the HE collimator. In order to use the high-energy gamma rays of I-131 (637 and 723 keV), it is necessary to design a new collimator to control penetration and improve resolution, instead of using a UHE collimator. Furthermore, scatter correction methods also need to be optimized.
      번역하기

      An energy window with a gamma peak centered at 364 keV (86%) is usually used for I-131 imaging. However, the image performance indexes such as image count, scatter fraction (SF), spatial resolution (SR) obtained using a conventional gamma camera, whic...

      An energy window with a gamma peak centered at 364 keV (86%) is usually used for I-131 imaging. However, the image performance indexes such as image count, scatter fraction (SF), spatial resolution (SR) obtained using a conventional gamma camera, which uses a 3/8-in sodium iodide scintillator, are poor mainly due to its low detection eciency. In this study, we investigated the feasibility of using a higher energy peak (637 and 723 keV) for the energy window to obtain a better imaging performance compared with the conventional I-131 imaging method. GATE (v7.0), which is based on Monte Carlo method, was used for performing simulations. A clinical gamma camera, SYMBIA-T2 (Siemens), was mounted on a NaI scintillator in the simulation. A GAGG scintillator was also realized for eective detection of high energy gamma, in addition to using high energy (HE) and ultrahigh energy (UHE) collimators. We obtained I-131 planar images through the conventionally used window method (364 keV 10%). The high-energy gamma ray of I 131 (637 and 723 keV) have been additionally used for improving image performance. The scatter correction method was applied to images for suppressing scatter due to high-energy gamma rays.
      Various indexes are used for validating image performance such as SR, SF, and contrast-to-noise ratio. High-energy gamma rays could be used to increase the image counts, but the other image performances were degraded compared to the scatter-corrected 364 keV images (SF of 6.33 - 27.73%; SR of 0.93 - 6.02%). The UHE collimator was useful in obtaining a better spatial resolution and suppressing scatter components compared with the HE collimator. However, it did not exhibit a sucient image performance to be considered as a replacement for the HE collimator. In order to use the high-energy gamma rays of I-131 (637 and 723 keV), it is necessary to design a new collimator to control penetration and improve resolution, instead of using a UHE collimator. Furthermore, scatter correction methods also need to be optimized.

      더보기

      참고문헌 (Reference)

      1 M. S. Kaminski, 96 : 1259-, 2000

      2 R. L. Wahl, 30 : 31-, 2003

      3 J. G. Rajendran, 49 : 837-, 2008

      4 Z. Keidar, 33 : 205-, 2003

      5 S. Kohlfuerst, 36 : 886-, 2009

      6 Y. K. Dewaraja, 24 : 417-, 2009

      7 G. Sgouros, 45 : 1366-, 2004

      8 E. Rault, 22 : 423-, 2007

      9 T. G. Turkington, 44 : 1262-, 1997

      10 D. Autret, 20 : 77-, 2005

      1 M. S. Kaminski, 96 : 1259-, 2000

      2 R. L. Wahl, 30 : 31-, 2003

      3 J. G. Rajendran, 49 : 837-, 2008

      4 Z. Keidar, 33 : 205-, 2003

      5 S. Kohlfuerst, 36 : 886-, 2009

      6 Y. K. Dewaraja, 24 : 417-, 2009

      7 G. Sgouros, 45 : 1366-, 2004

      8 E. Rault, 22 : 423-, 2007

      9 T. G. Turkington, 44 : 1262-, 1997

      10 D. Autret, 20 : 77-, 2005

      11 V. Zilioli, 56 : 551-, 2017

      12 A. Cot, 53 : 198-, 2006

      13 Y. K. Dewaraja, 41 : 123-, 2000

      14 Y. K. Dewaraja, 41 : 1760-, 2000

      15 S. Jan, 49 : 4543-, 2004

      16 K. Ogawa, 10 : 408-, 1991

      17 Y. Dewaraja, 45 : 3109-, 1998

      18 G. Delpon, 94 : 1224-, 2002

      19 Y. K. Dewaraja, 54 : 2182-, 2013

      20 C. Beijst, 57 : 103-, 2016

      21 C. A. J. van Gils, 61 : 5166-, 2016

      22 S. R. Cherry, "Physics in Nuclear Medicine" Saunders 239-, 2012

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 SCI 등재 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.47 0.15 0.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.2 0.26 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼