RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Vibration control of small horizontal axis wind turbine blade with shape memory alloy

      한글로보기

      https://www.riss.kr/link?id=A105236469

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Vibrational problems in the domestic Small Horizontal Axis Wind Turbines (SHAWT) are due to flap wise vibrations caused by varying wind velocities acting perpendicular to its blade surface. It has been reported that monitoring the structural health of...

      Vibrational problems in the domestic Small Horizontal Axis Wind Turbines (SHAWT) are due to flap wise vibrations caused by varying wind velocities acting perpendicular to its blade surface. It has been reported that monitoring the structural health of the turbine blades requires special attention as they are key elements of a wind power generation, and account for 15-20% of the total turbine cost. If this vibration problem is taken care, the SHAWT can be made as commercial success. In this work, Shape Memory Alloy (SMA) wires made of Nitinol (Ni-Ti) alloys are embedded into the Glass Fibre Reinforced Polymer (GFRP) wind turbine blade in order to reduce the flapwise vibrations. Experimental study of Nitinol (Ni-Ti) wire characteristics has been done and relationship between different parameters like current, displacement, time and temperature has been established. When the wind turbine blades are subjected to varying wind velocity, flapwise vibration occurs which has to be controlled continuously, otherwise the blade will be damaged due to the resonance. Therefore, in order to control these flapwise vibrations actively, a non-linear current controller unit was developed and fabricated, which provides actuation force required for active vibration control in smart blade. Experimental analysis was performed on conventional GFRP and smart blade, depicted a 20% increase in natural frequency and 20% reduction in amplitude of vibration. With addition of active vibration control unit, the smart blade showed 61% reduction in amplitude of vibration.

      더보기

      참고문헌 (Reference)

      1 Quek, S.T., "Vibration control of composite plates via optimal placement of piezoelectric patches" 14 (14): 229-245, 2003

      2 Bhargaw, H.N., "Thermo-electric behaviour of NiTi shape memory alloy" 23 (23): 2329-2335, 2013

      3 Gupta, K., "Stiffness characteristics of fibre-reinforced composite shaft embedded with shape memory alloy wires" 53 (53): 167-, 2003

      4 Mani, Y., "Smart material (SMA)-based actively tuned dynamic vibration absorber for vibration control in real time applications" 3 (3): 90-96, 2013

      5 Mollasalehi, E., "Small wind turbine tower structural vibration" 2012

      6 Mani, Y., "Shape memory alloy-based adaptive-passive dynamic vibration absorber for vibration control in piping applications" 21 (21): 1838-1847, 2015

      7 Saad, M.S., "Online monitoring and self-tuning control using pole placement method for active vibration control of a flexible beam" 21 (21): 449-460, 2015

      8 Qiao, Y., "Modeling smart structure of wind turbine blade" 19 (19): 491-498, 2012

      9 Sellami, T., "Modal and harmonic analysis of three-dimensional wind turbine models" 40 (40): 518-527, 2016

      10 Lim, Y.H., "Finite-element simulation of closed loop vibration control of a smart plate under transient loading" 12 (12): 272-, 2003

      1 Quek, S.T., "Vibration control of composite plates via optimal placement of piezoelectric patches" 14 (14): 229-245, 2003

      2 Bhargaw, H.N., "Thermo-electric behaviour of NiTi shape memory alloy" 23 (23): 2329-2335, 2013

      3 Gupta, K., "Stiffness characteristics of fibre-reinforced composite shaft embedded with shape memory alloy wires" 53 (53): 167-, 2003

      4 Mani, Y., "Smart material (SMA)-based actively tuned dynamic vibration absorber for vibration control in real time applications" 3 (3): 90-96, 2013

      5 Mollasalehi, E., "Small wind turbine tower structural vibration" 2012

      6 Mani, Y., "Shape memory alloy-based adaptive-passive dynamic vibration absorber for vibration control in piping applications" 21 (21): 1838-1847, 2015

      7 Saad, M.S., "Online monitoring and self-tuning control using pole placement method for active vibration control of a flexible beam" 21 (21): 449-460, 2015

      8 Qiao, Y., "Modeling smart structure of wind turbine blade" 19 (19): 491-498, 2012

      9 Sellami, T., "Modal and harmonic analysis of three-dimensional wind turbine models" 40 (40): 518-527, 2016

      10 Lim, Y.H., "Finite-element simulation of closed loop vibration control of a smart plate under transient loading" 12 (12): 272-, 2003

      11 Xu, S.X., "Finite element analysis and design of actively controlled piezoelectric smart structures" 40 (40): 241-262, 2004

      12 Qiu, Z., "Experiments on vibration suppression for a piezoelectric flexible cantilever plate using nonlinear controllers" 21 (21): 300-319, 2015

      13 Tushar, C., "Experimental vibration analysis of piezo-laminated beam" 2 (2): 94-99, 2014

      14 Jovanovic, M.M., "Experimental studies on active vibration control of a smart composite beam using a PID controller" 22 (22): 115038-, 2013

      15 Singh, S.P., "Efficient modal control strategies for active control of vibrations" 262 (262): 563-575, 2003

      16 Arrigan, J., "Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers" 18 (18): 840-851, 2011

      17 Yuvaraja, M., "Comparative study on vibration characteristics of a flexible GFRP composite beam using SMA and PZT actuators" 64 : 571-581, 2013

      18 Lin, Y.J., "An application of smart-structure technology to rotor blade tip vibration control" 5 (5): 639-658, 1999

      19 Aoki, T., "Active vibration control using cantilever beam of smart matrix composite with embedded shape memory alloy" 270 : 2004

      20 Khot, S.M., "Active vibration control of cantilever beam by using PID based output feedback controller" 18 (18): 366-372, 2012

      21 이종원, "Active load control for wind turbine blades using trailing edge flap" 한국풍공학회 16 (16): 263-278, 2013

      22 Sanusi, K.O., "A concise review of the applications of NiTi shape-memory alloys in composite materials" 110 (110): 1-5, 2014

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2021 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-12-01 평가 등재 탈락 (해외등재 학술지 평가)
      2013-10-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-11-01 학술지명변경 한글명 : 스마트 구조와 시스템 국제 학술지 -> Smart Structures and Systems, An International Journal KCI등재후보
      2011-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2007-06-12 학술지등록 한글명 : 스마트 구조와 시스템 국제 학술지
      외국어명 : Smart Structures and Systems, An International Journal
      KCI등재후보
      2007-06-12 학술지등록 한글명 : 컴퓨터와 콘크리트 국제학술지
      외국어명 : Computers and Concrete, An International Journal
      KCI등재후보
      2007-04-09 학회명변경 한글명 : (사)국제구조공학회 -> 국제구조공학회 KCI등재후보
      2005-06-16 학회명변경 영문명 : Ternational Association Of Structural Engineering And Mechanics -> International Association of Structural Engineering And Mechanics KCI등재후보
      2005-01-01 평가 SCIE 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.17 0.44 1.04
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.97 0.88 0.318 0.18
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼