현재 공작기계의 상당부분에서 자동화 및 무인화가 이루어지고 있는 추세이며, 이러한 대부분의 산업시설들과 기계류에는 회전체 부품들을 가지고 있다. 이들 부품들에서 베어링(Bearing)은 ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A40014208
2002
Korean
325.000
학술저널
871-877(7쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
현재 공작기계의 상당부분에서 자동화 및 무인화가 이루어지고 있는 추세이며, 이러한 대부분의 산업시설들과 기계류에는 회전체 부품들을 가지고 있다. 이들 부품들에서 베어링(Bearing)은 ...
현재 공작기계의 상당부분에서 자동화 및 무인화가 이루어지고 있는 추세이며, 이러한 대부분의 산업시설들과 기계류에는 회전체 부품들을 가지고 있다. 이들 부품들에서 베어링(Bearing)은 절대적으로 매우 중요한 부분을 차지하고 있으며, 만일 회전축시스템(Rotor System)에서 베어링의 심각한 이상은 시스템이 정지되는 사태를 불러일으킬 수도 있다. 따라서 이상에 대한 조기감지의 역할은 전체 시스템의 향상뿐만 아니라, 비용이나 시간적인 측면에서도 크나큰 이익을 가져다 줄 수 있다.
지금까지 이러한 회전축시스템에 대해 다양한 이상진단을 시도하여 왔으며 앞으로도 많은 종류의 이상진단이 이루어지리라 생각한다. 이런 다양한 형태의 이상진단은 시스템에서 추출되는 데이터를 여러 가지 기법과 추출하는 센서의 특징을 파악하여 이상진단 알고리즘을 수립하는 과정을 망라하게 된다. 특히 이상진단 알고리즘에는 측정된 데이터의 불확실성을 감안한 이론이 적용되어야 한다.
본 논문에서는 회전축시스템의 베어링에 대한 이상진단을 통계적 기법, Fuzzy, Clustering, Neural Network과 Neuro-fuzzy를 이용한 기법과의 상호비교를 통해서 여러 종류의 이상을 구분하는 작업수행을 연구하고자 한다.
A Heuristic Approach to Disassembly Scheduling with Assembly Product Structure
Quasi Assignment Algorithms in Job Shops
Field Data Analyses of Two-Dimensional Warranty Data