RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Shakedown analysis of a wind turbine gear considering strain-hardening and the initial residual stress

      한글로보기

      https://www.riss.kr/link?id=A105941631

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Under some heavy-duty conditions, the shakedown state may occur on gears such as those used in a megawatt wind turbine gearbox. The plastic deformation and the residual stress formed within the shakedown process further influence the contact behavior...

      Under some heavy-duty conditions, the shakedown state may occur on gears such as those used in a megawatt wind turbine gearbox.
      The plastic deformation and the residual stress formed within the shakedown process further influence the contact behavior and the service life of the gear. The initial residual stress caused by the heat treatment of the case-hardening gear, together with the strain-hardening constitutive behavior of the material, have a combined effect on the shakedown state. A two-dimensional elastic-plastic contact numerical model was developed for a case-hardened wind turbine gear to study effects of the initial residual stress and the strain-hardening properties. Plastic strain and residual stress are calculated at each loading cycle without the consideration of the tooth friction. The initial yield limit and the hardening modulus of the material were obtained through a tension test on a universal tensile test machine. The initial residual stress distribution was measured with the X ray diffraction method and then embedded in the finite element model. The results show that strain-hardening behavior can significantly improve the shakedown performance, and the larger the hardening modulus is, the less the maximum plastic strain is at the final shakedown state. Initial residual compressive stress is helpful to improve the shakedown performance, while initial residual tensile stress has negative influence on the shakedown performance. As the normal load increases, the influence of the initial residual stress on the shakedown state becomes weakened.

      더보기

      참고문헌 (Reference)

      1 E. Conrado, "Use of multiaxial fatigue criteria and shakedown theorems in thermo-elastic rolling–sliding contact problems" 270 : 344-354, 2011

      2 A. F. Bower, "The influence of strain hardening on cumulative plastic deformation in rolling and sliding line contact" 37 : 471-493, 1989

      3 H. Haifeng, "Sun study of rolling contact fatigue behavior of a wind turbine gear based on damage-coupled elastic-plastic model" 141 : 512-519, 2018

      4 N. K. Fukumasu, "Stress analysis to improve pitting resistance in gear teeth" 45 : 255-258, 2016

      5 H. Liu, "Starved lubrication of a spur gear pair" 94 : 52-60, 2016

      6 P. N. Moulik, "Simulation of thermal stresses due to grinding" 43 : 831-851, 2001

      7 R. S. P. Alan, "Shakedown analyses for rolling and sliding contact problems" 43 : 4201-4219, 2006

      8 A. W. Aditya, "Rolling contact fatigue of case carburized steels" 95 : 264-281, 2017

      9 Nabi Ahmadi, "Predicting the ratcheting strain of 304 stainless steel by considering yield surface distortion and using a viscoplastic model" 대한기계학회 29 (29): 2857-2862, 2015

      10 W. Reinhardt, "Non-cyclic shakedownratcheting boundary determination: Analytical examples" ASME 555-563, 2010

      1 E. Conrado, "Use of multiaxial fatigue criteria and shakedown theorems in thermo-elastic rolling–sliding contact problems" 270 : 344-354, 2011

      2 A. F. Bower, "The influence of strain hardening on cumulative plastic deformation in rolling and sliding line contact" 37 : 471-493, 1989

      3 H. Haifeng, "Sun study of rolling contact fatigue behavior of a wind turbine gear based on damage-coupled elastic-plastic model" 141 : 512-519, 2018

      4 N. K. Fukumasu, "Stress analysis to improve pitting resistance in gear teeth" 45 : 255-258, 2016

      5 H. Liu, "Starved lubrication of a spur gear pair" 94 : 52-60, 2016

      6 P. N. Moulik, "Simulation of thermal stresses due to grinding" 43 : 831-851, 2001

      7 R. S. P. Alan, "Shakedown analyses for rolling and sliding contact problems" 43 : 4201-4219, 2006

      8 A. W. Aditya, "Rolling contact fatigue of case carburized steels" 95 : 264-281, 2017

      9 Nabi Ahmadi, "Predicting the ratcheting strain of 304 stainless steel by considering yield surface distortion and using a viscoplastic model" 대한기계학회 29 (29): 2857-2862, 2015

      10 W. Reinhardt, "Non-cyclic shakedownratcheting boundary determination: Analytical examples" ASME 555-563, 2010

      11 H. Liu, "Mixed lubricated line contact analysis for spur gears using a deterministic model" 134 : 021501-, 2012

      12 B. D. Allison, "Evolution of mechanical properties of M50bearing steel due to rolling contact fatigue" University of Florida 2013

      13 H. Liu, "Effects of the case hardening properties on the contact fatigue of a wind turbine gear pair" 141 : 520-527, 2018

      14 D. L. Mcdowell, "Effects of non-linear kinematic hardening on plastic deformation and residual stresses in rolling line contact" 144 : 19-37, 1991

      15 Y. Shen, "Effect of retained austenite – Compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel" 75 : 135-144, 2015

      16 A. Kapoor, "Effect of changes in contact geometry on shakedown of surfaces in rolling/sliding contact" 34 : 223-239, 1992

      17 Batista, "Contact fatigue of automotive gears: evolution and effects of residual stresses introduced by surface treatments" 23 : 217-228, 2000

      18 H. P. Evans, "Assessment of the effects of residual stresses on fatigue life of real rough surfaces in lubricated contact" IEEE, Newcastle upon Tyne 5 : 2016

      19 Y. Q. Xu, "Analysis of the gear contact fatigue strength based on the compressive residual stress" 143-144 : 1086-1090, 2010

      20 A. Warhadpande, "An elastic-plastic finite element model for rolling contact fatigue" Purdue University 2012

      21 J. E. Merwin, "An analysis of plastic deformation in rolling contact" 1847-1982, 1963

      22 Yuqin Wen, "A solution considering elastic-plastic deformation of asperities for contact between rough cylindrical surfaces" Emerald 70 (70): 353-362, 2018

      23 A. Kapoor, "A shakedown analysis of simple spur gears" 45 : 103-109, 2002

      24 K. L. Johnson, "A graphical approach to shakedown in rolling contact" Springer Netherlands 1990

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼