RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      초등수학 영재의 문제설정 단계와 사고과정 분석: 성냥개비 과제에 대한 사례분석을 중심으로 = Analysis of thinking process and steps in problem posing of the mathematically gifted children

      한글로보기

      https://www.riss.kr/link?id=A364119

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      The purpose of this study is to find how the mathematically gifted children pose difficult problems and articulate the characteristics of their thinking process in problem posing. The following research topic is established to be investigated: Through what steps of thinking process do the mathematically gifted children pose problems? To obtain answer to this question, we surveyed 4 mathematically gifted students from the Gifted Science Education Center of Pusan National University in Busan. Matchstick problems are carefully chosen or developed according to their level of academic performance, in the ways of creating problems, classification of mathematics, and degree of ill-structuredness of initial circumstance for problem posing. 4 subjects are asked to pose difficult problems from 'matchstick problem tasks` in thinking aloud method for 45 minutes each (2 times for 2 subjects, 1 time for other 2 subjects) and all their performance were videotaped. The results were investigated by testers and two educational psychology Ph.D`s. Researchers analyzed the protocols focused on the posed problems. Our main results of research topic are described as follows. The mathematically gifted children pose problems through thinking steps and process shown as below 1) Exploration (understanding of the situation, imaging), 2) Planning(idea dedication, plan deployment, plan expansion) 3) Temporary problem posing, 4) Examination(problem solving, reconstruction).
      번역하기

      The purpose of this study is to find how the mathematically gifted children pose difficult problems and articulate the characteristics of their thinking process in problem posing. The following research topic is established to be investigated: Through...

      The purpose of this study is to find how the mathematically gifted children pose difficult problems and articulate the characteristics of their thinking process in problem posing. The following research topic is established to be investigated: Through what steps of thinking process do the mathematically gifted children pose problems? To obtain answer to this question, we surveyed 4 mathematically gifted students from the Gifted Science Education Center of Pusan National University in Busan. Matchstick problems are carefully chosen or developed according to their level of academic performance, in the ways of creating problems, classification of mathematics, and degree of ill-structuredness of initial circumstance for problem posing. 4 subjects are asked to pose difficult problems from 'matchstick problem tasks` in thinking aloud method for 45 minutes each (2 times for 2 subjects, 1 time for other 2 subjects) and all their performance were videotaped. The results were investigated by testers and two educational psychology Ph.D`s. Researchers analyzed the protocols focused on the posed problems. Our main results of research topic are described as follows. The mathematically gifted children pose problems through thinking steps and process shown as below 1) Exploration (understanding of the situation, imaging), 2) Planning(idea dedication, plan deployment, plan expansion) 3) Temporary problem posing, 4) Examination(problem solving, reconstruction).

      더보기

      참고문헌 (Reference)

      1 김판수, "초등수학영재의 문제설정 과정분석" 2003

      2 하주현, "창의적 인성의 관계 교육심리연구 17" 17 : 2003

      3 김정효, "창의적 문제해결력 중심의 수학 교육과정 개발 및 적용 초등학교수준을 중심으로" 4 (4): 2000

      4 전윤식, "창의성 교육의 새로운 접근: 문제찾기" 한국교육학회 41 (41): 10-238, 2003

      5 김정섭, "창의성 교육을 위한 패러다임의 전환:문제 해결에서 문제 찾기로" 2002

      6 이대현, "수학교육에서 직관적 모델에 관한 연구" 11 (11): 2001

      7 임문규, "수학교육에서 문제설정과 문제해결의 관련에 관한 연구" 대한수학교육학회 1992

      8 주정언, "수학 문제 만들기 학습이 문제 발견 능력에 미치는 영향" 2002

      9 박학규, "물리문제 해결과정에서 중학생들의 사고과정의 특성 분석" 1993

      10 은희철, "문제에 바탕을 둔 학습" 1998

      1 김판수, "초등수학영재의 문제설정 과정분석" 2003

      2 하주현, "창의적 인성의 관계 교육심리연구 17" 17 : 2003

      3 김정효, "창의적 문제해결력 중심의 수학 교육과정 개발 및 적용 초등학교수준을 중심으로" 4 (4): 2000

      4 전윤식, "창의성 교육의 새로운 접근: 문제찾기" 한국교육학회 41 (41): 10-238, 2003

      5 김정섭, "창의성 교육을 위한 패러다임의 전환:문제 해결에서 문제 찾기로" 2002

      6 이대현, "수학교육에서 직관적 모델에 관한 연구" 11 (11): 2001

      7 임문규, "수학교육에서 문제설정과 문제해결의 관련에 관한 연구" 대한수학교육학회 1992

      8 주정언, "수학 문제 만들기 학습이 문제 발견 능력에 미치는 영향" 2002

      9 박학규, "물리문제 해결과정에서 중학생들의 사고과정의 특성 분석" 1993

      10 은희철, "문제에 바탕을 둔 학습" 1998

      11 정지호, "문제설정의 교수-학습에 관하여" 31 (31): 1992

      12 이석희, "문제설정 방법이 문제해결력과 창의력에 미치는 효과 분석" 1996

      13 La Valeur de la Science, "과학의 가치" Poincaré 단대출판부 19051983

      14 강인애, "^문제중심학습또 하나의 구성주의적 교수-학습 모형 구성주의 교육학" 교육과학사 1998

      15 Leung, "The Relation of Mathematical Knowledge and Creative Thinking to the Mathematical Problem Posing of Prospective Elementary School Teachers on Tasks Differing in Numerical Information Content University of Pittsburgh The Development of Fifth-grade Children's Problem-posing Abilities Educational Studies in Mathematics" Unpublished Doctoral Dissertation 34 : 19931997

      16 A, "The Psychology of Mathematical Abilities in School Children" The Univ of Chicago Press 1976

      17 Hadamard,J, "The Psychology of Invention in the Mathematical Field" Dover Publications 1954

      18 Brugman,G.M, "The Discovery and Formulation of Problems" 27 : 1995

      19 Hoffman, "The Dialectics of Fiftedness" -95, 1995

      20 Sheffield,L.J, "The Development of Gifted and Talented Mathematics Students and National Council of Teachers of Mathematics Standard" the national research center on the gifted and talented : 1994

      21 English,L.D, "The Development of Fifth-grade Children's Problem-posing Abilities" 34 : 1997

      22 Harcourt Brace, "The Art of Thought" 19621994

      23 Wakefield, "Some Implications for Art Education" 1985

      24 Haylock,D.E, "Recognizing Mathematical Creativity in Schoolchildren" no : 1997

      25 Simon,M.A, "Prospective Elementary Teachers' Knowledge of Division" 24 : 1993

      26 On Analyzing Problem Posing, "Proceedings of the Seventeenth Annual Meeting of the International Group for the Psychology of Mathematics Education" (hda) : 1993

      27 Dillon,J.T, "Problem Finding and Solving" 16 : 1982

      28 김용진, "PBL의 이론과 실제" 12 (12): 2000

      29 Silver,E.A, "On Mathematical Problem Posing" 14 : 1994

      30 "National Council of Teachers Mathematics Principles and Standards for School Mathematics" 2000

      31 Silver, "Mathematics Problem Posing and Problem Solving by Middle School Students Paper Presented at the Annual Meeting of the American Educational Research Association The Development of Fifth-grade Children's Problem-posing Abilities Educational Studies in Mathematics" 19931997

      32 2nd ed, "How to Solve It A New Aspect of Mathematical Method" 19571994

      33 Silver,E.A, "Fostering Creative through Instruction Rich in Mathematical Problem Solving and Problem Posing" 29 (29): 1997

      34 Ramirez,V.E, "Finding the Right Problem" 3 : 2002

      35 Schoenfeld, "Episodes and Executive Decisions in Mathematical Problem Solving Acquisition of Mathematics Concepts and Processes" 1980

      36 Van den Heuvel-Panhuizen, "Easy and Difficult Problems on Percentage For the Learning of Mathematics" 15 (15): 1995

      37 "Discovery-oriented Behavior and Originality of Creative Products A Study with Artists Journal of Personality and Social Psychology" 1971

      38 Okuda, "Creativity and the Finding and Solving of Real-world Problems Journal of Psychoeducational Assesment" 1991

      39 Silver,E.A, "Children's Problem Posing within Formal and Informal Contexts" 29 (29): 1998

      40 English, "Children's Problem Posing and Problem-solving Preferences' in J Research in Early Number Learning Australian Association of Mathematics Teachers" 1996

      41 Larkin, "A Research Methodology for Studying How People Think" 1984

      42 "A New Perspective on Talented Mathematicians Educational Studies in Mathematics" 1986

      43 John Wiley, "A Longitudinal Study of Problem-finding in Art" 1976

      44 A, "A Key to Creative Productivity Investigating Creativity in Youth" Hampton Press 1999

      45 Haylock,D.E, "A Framework for Assessing Mathematical Creativity in Schoolchildren" 18 : 1987

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.84 1.84 1.82
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.82 1.8 2.264 0.23
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼