RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Analysis of Cell to Module Loss Factor for Shingled PV Module

      한글로보기

      https://www.riss.kr/link?id=A107054851

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Shingled technology is the latest cell interconnection technology developed in the photovoltaic (PV) industry due to its reduced resistance loss, low-cost, and innovative electrically conductive adhesive (ECA). There are several advantages associated ...

      Shingled technology is the latest cell interconnection technology developed in the photovoltaic (PV) industry due to its reduced resistance loss, low-cost, and innovative electrically conductive adhesive (ECA). There are several advantages associated with shingled technology to develop cell to module (CTM) such as the module area enlargement, low processing temperature, and interconnection; these advantages further improves the energy yield capacity. This review paper provides valuable insight into CTM loss when cells are interconnected by shingled technology to form modules. The fill factor (FF) had improved, further reducing electrical power loss compared to the conventional module interconnection technology. The commercial PV module technology was mainly focused on different performance parameters; the module maximum power point (Pmpp), and module efficiency. The module was then subjected to anti-reflection (AR) coating and encapsulant material to absorb infrared (IR) and ultraviolet (UV) light, which can increase the overall efficiency of the shingled module by up to 24.4%. Module fabrication by shingled interconnection technology uses EGaIn paste; this enables further increases in output power under standard test conditions. Previous research has demonstrated that a total module output power of approximately 400 Wp may be achieved using shingled technology and CTM loss may be reduced to 0.03%, alongside the low cost of fabrication.

      더보기

      참고문헌 (Reference)

      1 Guo, S., "Two-dimensional current flow in stringed PV cells and its influence on the cell-to-module resistive losses" 130 : 224-231, 2016

      2 Sung, E., "Systems, method and apparatus for curing, U.S. Patent No. 9,748,434B1"

      3 Scientific American, "Sun-roof: solar panel shingles come down in price, gain in popularity"

      4 Green, M. A., "Solar cell efficiency tables(version 15)" 8 (8): 187-195, 2000

      5 Woehrl, . N., "Solar cell demand for bifacial and singulated-cell module architectures" 48-62, 2017

      6 Fischer, G., "Simulation based development of industrial PERC cell production beyond 20. 5% efficiency" 55 : 425-430, 2014

      7 Morad. R., "Shingled solar cell module, U.S. Patent No. 9,484,484B2"

      8 Klasen, N., "Shingled cell interconnection: A new generation of bifacial PV-modules" 2017

      9 Leinkram, C., "Shingled array of solar cells, U.S. Secretary of Navy, U.S. Patent No. 3,769,091A"

      10 Müller, M., "Sensitivity analysis of industrial multicrystalline PERC silicon solar cells by means of 3-D device simulation and metamodeling" 4 (4): 107-113, 2013

      1 Guo, S., "Two-dimensional current flow in stringed PV cells and its influence on the cell-to-module resistive losses" 130 : 224-231, 2016

      2 Sung, E., "Systems, method and apparatus for curing, U.S. Patent No. 9,748,434B1"

      3 Scientific American, "Sun-roof: solar panel shingles come down in price, gain in popularity"

      4 Green, M. A., "Solar cell efficiency tables(version 15)" 8 (8): 187-195, 2000

      5 Woehrl, . N., "Solar cell demand for bifacial and singulated-cell module architectures" 48-62, 2017

      6 Fischer, G., "Simulation based development of industrial PERC cell production beyond 20. 5% efficiency" 55 : 425-430, 2014

      7 Morad. R., "Shingled solar cell module, U.S. Patent No. 9,484,484B2"

      8 Klasen, N., "Shingled cell interconnection: A new generation of bifacial PV-modules" 2017

      9 Leinkram, C., "Shingled array of solar cells, U.S. Secretary of Navy, U.S. Patent No. 3,769,091A"

      10 Müller, M., "Sensitivity analysis of industrial multicrystalline PERC silicon solar cells by means of 3-D device simulation and metamodeling" 4 (4): 107-113, 2013

      11 White, W., "Real Goods Solar, Inc. (RGSE)stock skyrockets on dow deal"

      12 Dickson, J. D. C., "Photo-voltaic semiconductor apparatus or the like, Hoffman Electronics Corp., U.S. Patent No. 2,938,938A"

      13 Kasahara, N., "Performance evaluation of bifacial photovoltaic modules for urban application" 3 : 2455-2458, 2003

      14 Beaucarne, G., "Materials challenge for shingled cells interconnection" 98 : 115-124, 2016

      15 Shi, Z., "Mass production of the innovative PLUTO solar cell technology" 001922-001926, 2009

      16 Radouane, K., "Key elements in the design of bifacial PV power plants" 1764-1769, 2015

      17 Min, B., "Incremental efficiency improvements of mass-produced PERC cells up to 24%, predicted solely with continuous development of existing technologies and wafer materials" 473-476, 2015

      18 Zhao, J., "Improved efficiency silicon solar cell module" 18 (18): 48-50, 1997

      19 Summhammer, J., "High-voltage PV modules with crystalline silicon solar cells" 3119-3122, 2013

      20 Romero, P., "Experimental study of diode laser cutting of silicon by means of water assisted thermally driven separation mechanism" 41 : 617-626, 2013

      21 Kreinin, L., "Experimental analysis of the increases in energy generation of bifacial over monofacial PV modules" 3140-3143, 2011

      22 Singh, J. P., "Cell-to-module power loss/gain analysis of silicon wafer-based PV modules" 31 : 98-105, 2016

      23 Rabanal-Arabach, J., "Cell-to-module conversion loss simulation for shingled-cell concept" 178-182, 2017

      24 Mittag, M., "Cell-to-Module (CTM) analysis for photovoltaic modules with shingled solar cells" 1531-1536, 2017

      25 Rudolph, D., "Cell design optimization for shingled modules" 880-883, 2003

      26 Singh, J. P., "Bifacial solar cell measurements under standard test conditions and the impact on cell-to-module loss analysis" 56 (56): 2017

      27 Baliozian, P., "Bifacial shingle solar cells on p-type Cz-Si (pSPEER)" 11002-, 1999

      28 Wang, Z., "Advanced PERC and PERL production cells with 20.3% record efficiency for standard commercial p-type silicon wafers" 20 (20): 260-268, 2012

      29 Izzi, M., "AMPERE: An european project aimed to decrease the levelized cost of energy with innovative heterojunction bifacial module solution ready for the market" 569-572, 2018

      30 Altermatt, P. P., "A roadmap for PERC cell efficiency towards 22%, focused on technology-related constraints" 55 : 17-21, 2014

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2013-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2012-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2010-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2007-04-03 학회명변경 한글명 : (사)한국신·재생에너지학회 -> 한국신·재생에너지학회
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.4 0.4 0.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.44 0.44 0.576 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼