RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      Advanced Technologies and Mechanisms for Yeast Evolutionary Engineering = Advanced Technologies and Mechanisms for Yeast Evolutionary Engineering

      한글로보기

      https://www.riss.kr/link?id=A107178105

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In vitro evolution is a powerful technique for the engineering of yeast strains to study cellular mechanisms associated with evolutionary adaptation; strains with desirable traits for industrial processes can also be generated. There are two distinct approaches to generate evolved strains in vitro: the sequential transfer of cells in the stationary phase into fresh medium or the continuous growth of cells in a chemostat bioreactor via the constant supply of fresh medium. In culture, evolutionary forces drive diverse adaptive mechanisms within the cell to overcome environmental or intracellular stressors. Especially, this engineering strategy has expanded to the field of human cell lines; the understanding of such adaptive mechanisms provides promising targets for the treatment of human genetic diseases and cancer. Therefore, this technology has the potential to generate numerous industrial, medical, and academic applications
      번역하기

      In vitro evolution is a powerful technique for the engineering of yeast strains to study cellular mechanisms associated with evolutionary adaptation; strains with desirable traits for industrial processes can also be generated. There are two distinct ...

      In vitro evolution is a powerful technique for the engineering of yeast strains to study cellular mechanisms associated with evolutionary adaptation; strains with desirable traits for industrial processes can also be generated. There are two distinct approaches to generate evolved strains in vitro: the sequential transfer of cells in the stationary phase into fresh medium or the continuous growth of cells in a chemostat bioreactor via the constant supply of fresh medium. In culture, evolutionary forces drive diverse adaptive mechanisms within the cell to overcome environmental or intracellular stressors. Especially, this engineering strategy has expanded to the field of human cell lines; the understanding of such adaptive mechanisms provides promising targets for the treatment of human genetic diseases and cancer. Therefore, this technology has the potential to generate numerous industrial, medical, and academic applications

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼