RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Novel electrodes and gate dielectrics for field-effecttransistors based on two-dimensional materials

      한글로보기

      https://www.riss.kr/link?id=A109036589

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Two-dimensional (2D) materials are atomically thin materials that show quan-tum confinement effect. They have been studied as promising materials forfield-effect transistors (FETs). The fabrication of an FET mainly concerns how todeposit metal electrodes and dielectrics onto the 2D material channel. Andconventional fabrication processes are not optimized for novel applications of2D FETs. This review aims to introduce recent studies regarding novel elec-trodes and dielectrics for 2D FETs. The devices made by these approachesshow comparable performance to conventional FETs. And they feature newapplications and easy fabrication. This review covers the topics in two sections:evaporation-free electrodes and nonoxide dielectrics. The former covers elec-trodes prepared without direct deposition of metals using evaporators or sput-ters. The latter encompasses alternatives to oxide dielectrics. These topicswould be beneficial to realize the intrinsic properties of 2D materials and toassist fundamental research with prototyping FETs on a tabletop.
      번역하기

      Two-dimensional (2D) materials are atomically thin materials that show quan-tum confinement effect. They have been studied as promising materials forfield-effect transistors (FETs). The fabrication of an FET mainly concerns how todeposit metal electro...

      Two-dimensional (2D) materials are atomically thin materials that show quan-tum confinement effect. They have been studied as promising materials forfield-effect transistors (FETs). The fabrication of an FET mainly concerns how todeposit metal electrodes and dielectrics onto the 2D material channel. Andconventional fabrication processes are not optimized for novel applications of2D FETs. This review aims to introduce recent studies regarding novel elec-trodes and dielectrics for 2D FETs. The devices made by these approachesshow comparable performance to conventional FETs. And they feature newapplications and easy fabrication. This review covers the topics in two sections:evaporation-free electrodes and nonoxide dielectrics. The former covers elec-trodes prepared without direct deposition of metals using evaporators or sput-ters. The latter encompasses alternatives to oxide dielectrics. These topicswould be beneficial to realize the intrinsic properties of 2D materials and toassist fundamental research with prototyping FETs on a tabletop.

      더보기

      참고문헌 (Reference)

      1 K. Kang, 520 : 656-, 2015

      2 Y. Yoon, 11 : 3768-, 2011

      3 M. Amani, 102 : 193107-, 2013

      4 B. Radisavljevic, 5 : 9934-, 2011

      5 M. V. Kamalakar, 107 : 113103-, 2015

      6 Y. Xu, 11 : 14491-, 2019

      7 J. T. Ye, 338 : 1193-, 2012

      8 L. Britnell, 335 : 947-, 2012

      9 H. Li, 8 : 63-, 2012

      10 G. Seo, 14 : 5135-, 2020

      1 K. Kang, 520 : 656-, 2015

      2 Y. Yoon, 11 : 3768-, 2011

      3 M. Amani, 102 : 193107-, 2013

      4 B. Radisavljevic, 5 : 9934-, 2011

      5 M. V. Kamalakar, 107 : 113103-, 2015

      6 Y. Xu, 11 : 14491-, 2019

      7 J. T. Ye, 338 : 1193-, 2012

      8 L. Britnell, 335 : 947-, 2012

      9 H. Li, 8 : 63-, 2012

      10 G. Seo, 14 : 5135-, 2020

      11 S. Sharma, 21 : 5598-, 2021

      12 B. Radisavljevic, 6 : 147-, 2011

      13 H. -Y. Chang, 7 : 5446-, 2013

      14 L. Iemmo, 10 : 106-, 2020

      15 S. Das, 13 : 100-, 2013

      16 Y. Zheng, 2 : 100298-, 2021

      17 Y. Liu, 557 : 696-, 2018

      18 P. Bampoulis, 9 : 19278-, 2017

      19 J. Jang, 34 : 2109899-, 2022

      20 X. Liu, 34 : 2108425-, 2022

      21 A. Rai, 8 : 316-, 2018

      22 T. Roy, 8 : 6259-, 2014

      23 X. Cui, 10 : 534-, 2015

      24 S. Song, 3 : 207-, 2020

      25 L. Yu, 14 : 3055-, 2014

      26 Y. -J. Yu, 9 : 3430-, 2009

      27 Z. Jiang, 55 : 12969-, 2020

      28 G. -H. Lee, 7 : 7931-, 2013

      29 M. Mahajan, 11 : 024031-, 2019

      30 K. Murali, 31 : 2010513-, 2021

      31 J. Jeon, 12 : 338-, 2018

      32 J. Xu, 26 : 5328-, 2016

      33 E. J. Telford, 18 : 1416-, 2018

      34 T. D. Ngo, 7 : 2001212-, 2021

      35 Y. Z. N. Htwe, 7 : 100435-, 2022

      36 T. -Y. Kim, 10 : 2819-, 2016

      37 U. Cho, 7 : 21220-, 2022

      38 T. -Y. Kim, 11 : 10273-, 2017

      39 K. H. Chan, 216 : 1800829-, 2019

      40 A. M. Nardes, 9 : 727-, 2008

      41 S. K. Mondal, 5 : 2100634-, 2021

      42 H. Li, 8 : 682-, 2012

      43 G. Rubio-Bollinger, 4 : 847-, 2015

      44 S. B. Mitta, 8 : 012002-, 2020

      45 M. S. Fuhrer, 8 : 146-, 2013

      46 K. K. Kim, 6 : 8583-, 2012

      47 C. R. Dean, 5 : 722-, 2010

      48 N. Petrone, 9 : 8953-, 2015

      49 H. -S. Ra, 10 : 925-, 2018

      50 W. Bao, 102 : 042104-, 2013

      51 L. Liu, 7 : 065121-, 2017

      52 F. Endres, 8 : 2101-, 2006

      53 S. H. Kim, 25 : 1822-, 2013

      54 H. Du, 50 : 5641-, 2015

      55 A. A. Kornyshev, 111 : 5545-, 2007

      56 M. Singh, 5 : 3509-, 2017

      57 J. Xia, 4 : 505-, 2009

      58 E. Uesugi, 3 : 1595-, 2013

      59 R. Rold an, 88 : 054515-, 2013

      60 J. A. Woollam, 13 : 3843-, 1976

      61 A. Maiti, 14 : 5139-, 2012

      62 J. Zou, 123 : 6438-, 2019

      63 D. Hisamoto, 47 : 2320-, 2000

      64 S. Gupta, 2 : 8-, 2018

      65 S. Hong, 330 : 129240-, 2021

      66 M. Chhowalla, 5 : 263-, 2013

      67 I. Song, 5 : 7495-, 2015

      68 Y. Zhang, 438 : 201-, 2005

      69 K. F. Mak, 7 : 494-, 2012

      70 K. S. Novoselov, 102 : 10451-, 2005

      71 A. O’Neill, 24 : 2414-, 2012

      72 G. Cunningham, 6 : 3468-, 2012

      73 K. S. Kim, 457 : 706-, 2009

      74 I. Song, 53 : 1266-, 2014

      75 I. Song, 57 : 15374-, 2018

      76 W. B. Ribbens, "Understanding Automotive Electronics" Butterworth-Heinemann 23-, 2017

      77 S. M. Sze, "Physics of Semiconductor Devices" John Wiley &Sons 2006

      78 Song Youngmin ; Ha Young‐Geun, "One‐Step Fabricated and Solution‐Processed Hybrid Gate Dielectrics for Low‐Voltage Organic Thin‐Film Transistors" 대한화학회 42 (42): 983-987, 2021

      79 Yang Liu ; Sang Hyeob Lee ; 이우경 ; 윤일, "Ionic Liquid-dependent Gold Nanoparticles of Purpurin-18 for Cellular Imaging and Photodynamic Therapy In Vitro" 대한화학회 41 (41): 230-233, 2020

      80 H. Xiao, "Introduction to Semiconductor Manufacturing Technology" Prentice Hall 2001

      81 G. L. Miessler, "Inorganic Chemistry" Pearson 2014

      82 Young-Ho Oh ; SungyulLee, "Hydrogen Bonding in SN2 Reactions Promoted or Inhibited by Ionic Liquids: Effects of Side Chain" 대한화학회 42 (42): 446-451, 2021

      83 홍종욱, "Highly Active Binary Exfoliated MoS2 Sheet–Cu2O Nanocrystal Hybrids for Efficient Photocatalytic Pollutant Degradation" 대한화학회 41 (41): 1147-1152, 2020

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼