RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE SSCI

      Topic-based content and sentiment analysis of Ebola virus on Twitter and in the news

      한글로보기

      https://www.riss.kr/link?id=A107501223

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>The present study investigates topic coverage and sentiment dynamics of two different media sources, Twitter and news publications, on the hot health issue of Ebola. We conduct content and sentiment analysis by: (1) applying vocabulary control to collected datasets; (2) employing the n-gram LDA topic modeling technique; (3) adopting entity extraction and entity network; and (4) introducing the concept of topic-based sentiment scores. With the query term 'Ebola' or 'Ebola virus', we collected 16,189 news articles from 1006 different publications and 7,106,297 tweets with the Twitter stream API. The experiments indicate that topic coverage of Twitter is narrower and more blurry than that of the news media. In terms of sentiment dynamics, the life span and variance of sentiment on Twitter is shorter and smaller than in the news. In addition, we observe that news articles focus more on event-related entities such as person, organization and location, whereas Twitter covers more time-oriented entities. Based on the results, we report on the characteristics of Twitter and news media as two distinct news outlets in terms of content coverage and sentiment dynamics.</P>
      번역하기

      <P>The present study investigates topic coverage and sentiment dynamics of two different media sources, Twitter and news publications, on the hot health issue of Ebola. We conduct content and sentiment analysis by: (1) applying vocabulary contro...

      <P>The present study investigates topic coverage and sentiment dynamics of two different media sources, Twitter and news publications, on the hot health issue of Ebola. We conduct content and sentiment analysis by: (1) applying vocabulary control to collected datasets; (2) employing the n-gram LDA topic modeling technique; (3) adopting entity extraction and entity network; and (4) introducing the concept of topic-based sentiment scores. With the query term 'Ebola' or 'Ebola virus', we collected 16,189 news articles from 1006 different publications and 7,106,297 tweets with the Twitter stream API. The experiments indicate that topic coverage of Twitter is narrower and more blurry than that of the news media. In terms of sentiment dynamics, the life span and variance of sentiment on Twitter is shorter and smaller than in the news. In addition, we observe that news articles focus more on event-related entities such as person, organization and location, whereas Twitter covers more time-oriented entities. Based on the results, we report on the characteristics of Twitter and news media as two distinct news outlets in terms of content coverage and sentiment dynamics.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼