When e be an idempotent of a ring R, then eR is a right ideal of a ring R and also a left eRe is a module, in this paper to show that (i) Hom_(R) (eR, eR) and eRe are ring isomorphic. (ii)Let A. and .B are right R-modules and let 0→ A→"□" B be...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A75013162
Ghil, Byung Moon (Department of Mathematics, Sunmoon University)
1998
English
405.000
학술저널
5-6(2쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
When e be an idempotent of a ring R, then eR is a right ideal of a ring R and also a left eRe is a module, in this paper to show that (i) Hom_(R) (eR, eR) and eRe are ring isomorphic. (ii)Let A. and .B are right R-modules and let 0→ A→"□" B be...
When e be an idempotent of a ring R, then eR is a right ideal of a ring R and also a left eRe is a module, in this paper to show that (i) Hom_(R) (eR, eR) and eRe are ring isomorphic. (ii)Let A. and .B are right
R-modules and let 0→ A→"□" B be an exact sequence, then 0 → A→"□" B splits if and only if there exists g: B→ A such that g ˚f== i (where i:. A ―> A, identity function).
A note on an input semigroup S and S-automata
Atomic Momentum Diffraction in Shaped Potentials