RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      LPG 누출시 피해거리 및 폭발영향에 관한 연구 = A Study on the Damaging Distance and the Explosion Effect by the LPG Release

      한글로보기

      https://www.riss.kr/link?id=A3081924

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The release of gas from the LPG storage tank by the rupture or leakage can occure explosion and this causes serious damage to people and structures.
      In this study, the explosion effect and damaging distance were measured for the LPG cloud explosion to perform the quantitative risk assessment for the PSM, and the effective parameters on the explosion were found. The gas dispersion and mass contaminant in the explosion limits were calculated by using DEGADIS, and it was converted to TNT equivalency and damaging distance.
      As a result, the wind speed was the most effective parameter on the diffusion rate and TNT equivalency, and the damaging distance were increased with decrease of wind speed and surface roughness.
      번역하기

      The release of gas from the LPG storage tank by the rupture or leakage can occure explosion and this causes serious damage to people and structures. In this study, the explosion effect and damaging distance were measured for the LPG cloud explosion t...

      The release of gas from the LPG storage tank by the rupture or leakage can occure explosion and this causes serious damage to people and structures.
      In this study, the explosion effect and damaging distance were measured for the LPG cloud explosion to perform the quantitative risk assessment for the PSM, and the effective parameters on the explosion were found. The gas dispersion and mass contaminant in the explosion limits were calculated by using DEGADIS, and it was converted to TNT equivalency and damaging distance.
      As a result, the wind speed was the most effective parameter on the diffusion rate and TNT equivalency, and the damaging distance were increased with decrease of wind speed and surface roughness.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼