RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Modelling of Stirrup Confinement Effects in RC Layered Beam Finite Elements Using a 3D Yield Criterion and Transversal Equilibrium Constraints

      한글로보기

      https://www.riss.kr/link?id=A105488434

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Apart from its recognized strengthening effect for shear loading, the presence of stirrups in reinforced concrete results in an increase of the ductility of structural members and in the capacity of reaching higher longitudinal compressive stress leve...

      Apart from its recognized strengthening effect for shear loading, the presence of stirrups in reinforced concrete results in an increase of the ductility of structural members and in the capacity of reaching higher longitudinal compressive stress levels provided by transversal confinement. These effects are usually represented phenomenologically in fibre beam models by artificially increasing the compressive strength and the ultimate compressive strain of concrete. Two numerical formulations for layered beam descriptions accounting explicitly for transversal confinement are implemented and assessed in this contribution. The influence of stirrups is incorporated by means of a multi-dimensional yield surface for concrete, combined with equilibrium constraints for the transversal direction involving concrete and steel stirrups, and with a concrete ultimate strain dependent on the hydrostatic stress. This contribution focuses on the numerical formulations of both frameworks, and on their assessment against experimental results available in the literature.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Computational Framework
      • 3. Assessment with Respect to Experimental Results
      • 4. Discussion
      • Abstract
      • 1. Introduction
      • 2. Computational Framework
      • 3. Assessment with Respect to Experimental Results
      • 4. Discussion
      • 5. Conclusion and Perspectives
      • References
      더보기

      참고문헌 (Reference)

      1 Lu, X., "Uniaxial and triaxial behavior of high strength concrete with and without steel fibers" New Jersey Institute of Technology 2005

      2 Comi, C., "Two-phase damage modeling of concrete affected by alkali-silica reaction under variable temperature and humidity conditions" 49 : 3367-3380, 2012

      3 Hammoud, R., "Triaxial compressive strength of concrete subjected to high temperatures" 26 : 705-712, 2014

      4 Gabet, T., "Triaxial behaviour of concrete under high stresses: Influence of the loading path on compaction and limit states" 38 : 403-412, 2008

      5 Mander, J. B., "Theoretical stress-strain model for confined concrete" 114 : 1804-1826, 1988

      6 Oliveira, C. E. M., "The influence of geometrically nonlinear effects on the progressive collapse of reinforced concrete structures" Universidade Federal de Ouro Preto 2015

      7 Richart, F. E., "The failure of plain and spirally reinforced concrete in compression" Engineering Experiment Station, University of Illinois 1929

      8 Ding, Y., "The composite effect of steel fibres and stirrups on the shear behaviour of beams using self-consolidating concrete" 33 : 107-117, 2011

      9 Sfer, D., "Study of the behavior of concrete under triaxial compression" 128 : 156-163, 2002

      10 Sargin, M., "Stress-strain relationship for concrete and the analysis of structural concrete section" University of Waterloo 1971

      1 Lu, X., "Uniaxial and triaxial behavior of high strength concrete with and without steel fibers" New Jersey Institute of Technology 2005

      2 Comi, C., "Two-phase damage modeling of concrete affected by alkali-silica reaction under variable temperature and humidity conditions" 49 : 3367-3380, 2012

      3 Hammoud, R., "Triaxial compressive strength of concrete subjected to high temperatures" 26 : 705-712, 2014

      4 Gabet, T., "Triaxial behaviour of concrete under high stresses: Influence of the loading path on compaction and limit states" 38 : 403-412, 2008

      5 Mander, J. B., "Theoretical stress-strain model for confined concrete" 114 : 1804-1826, 1988

      6 Oliveira, C. E. M., "The influence of geometrically nonlinear effects on the progressive collapse of reinforced concrete structures" Universidade Federal de Ouro Preto 2015

      7 Richart, F. E., "The failure of plain and spirally reinforced concrete in compression" Engineering Experiment Station, University of Illinois 1929

      8 Ding, Y., "The composite effect of steel fibres and stirrups on the shear behaviour of beams using self-consolidating concrete" 33 : 107-117, 2011

      9 Sfer, D., "Study of the behavior of concrete under triaxial compression" 128 : 156-163, 2002

      10 Sargin, M., "Stress-strain relationship for concrete and the analysis of structural concrete section" University of Waterloo 1971

      11 Cusson, D., "Stress-strain model for confined high-strength concrete" 121 : 468-477, 1995

      12 Scott, B. D., "Stress-strain behaviour of concrete confined by overlapping hoops at low and high strain rates" 79 : 13-27, 1982

      13 Ki-Nam Hong, "Stress-Strain Model of High Strength Concrete Confined by Rectangular Ties" 대한토목학회 9 (9): 225-232, 2005

      14 Sheikh, S. A., "Strength and ductility of tied concrete columns" 106 : 1079-1102, 1980

      15 Saatcioglu, M., "Strength and ductility of confined concrete" 118 : 1590-1607, 1992

      16 Malecot, Y., "Strength and damage of concrete under high triaxial loading" 14 : 777-803, 2010

      17 Omid Rashidian, "Progressive Collapse of Exterior Reinforced Concrete Beam–Column Sub-assemblages: Considering the Effects of a Transverse Frame" 한국콘크리트학회 10 (10): 479-497, 2016

      18 Jian Hou, "Progressive Collapse Resistance of RC Frames under a Side Column Removal Scenario: The Mechanism Explained" 한국콘크리트학회 10 (10): 237-247, 2016

      19 Dede, T., "Plasticity models for concrete material based on different criteria including Bresler-Pister" 31 : 278-286, 2010

      20 Chen, W. F., "Plasticity in reinforced concrete" McAraw-Hill Book Company 1982

      21 Mander, J. B., "Observed stress-strain behavior of confined concrete" 114 : 1827-1849, 1988

      22 Saritas, A., "Numerical integration of a class of 3D plastic-damage concrete models and condensation of 3D stress-strain relations for use in beam finite elements" 31 : 2327-2336, 2009

      23 임광모, "Numerical Assessment of Reinforcing Details in Beam-Column Joints on Blast Resistance" 한국콘크리트학회 10 (10): 87-96, 2016

      24 Oliveira, C. E. M., "Nonlinear analysis of the progressive collapse of reinforced concrete plane frames using a multilayered beam formulation" 7 : 845-855, 2014

      25 Crisfield, M. A., "Non linear finite elements analysis of solids and structures-volume 1: The essentials" Wiley 1995

      26 Santos, J., "New finite element to model bond-slip with steel strain effect for the analysis of reinforced concrete structures" 86 : 72-83, 2015

      27 Mullapudi, T. R., "Modeling of the seismic behavior of shear-critical reinforced concrete columns" 32 : 3601-3615, 2010

      28 Floriana Petrone, "Modeling of RC Frame Buildings for Progressive Collapse Analysis" 한국콘크리트학회 10 (10): 1-13, 2016

      29 Santafe Iribarren, B., "Investigation of the influence of design and material parameters in the progressive collapse analysis of RC structures" 33 : 2805-2820, 2011

      30 Kent, D. C., "Flexural members with confined concrete" 97 : 1969-1990, 1971

      31 Cho, C.-G., "Finite element prediction of the influence of confinement on RC beam-columns under single or double curvature bending" 25 : 1525-1536, 2003

      32 Garzon-Roca, J., "Finite element modelling of steel-caged RC columns subjected to axial force and bending moment" 40 : 168-186, 2012

      33 Petrangeli, M., "Fiber element for cyclic bending and shear of RC structures. I: Theory" 125 : 994-1001, 1999

      34 Stramandinoli, R. S. B., "FE model for nonlinear analysis of reinforced concrete beams considering shear deformation" 35 : 244-253, 2012

      35 Zhou, J. J., "Experimental study on mechanical behavior of high performance concrete under multi-axial compressive stress" 57 : 2514-2522, 2014

      36 Imran, I., "Experimental study of plain concrete under triaxial stress" 93 : 589-601, 1996

      37 Xiao, Y., "Experimental study and analytical modeling of triaxial behavior of confined concrete" Kyushu University 1989

      38 Breveglieri, M., "Embedded through-section shear strengthening technique using steel and CFRP bars in RC beams of different percentage of existing stirrup" 126 : 101-113, 2015

      39 Tan, T. H., "Effects of triaxial stress on concrete" 2005

      40 De Corte, W., "Effectiveness of spirally shaped stirrups in reinforced concrete beams" 52 : 667-675, 2013

      41 Park, R., "Ductility of square-confined concrete columns" 108 : 929-950, 1982

      42 Battini, J.-M., "Corotational beam elements in instability problems" Royal Institute of Technology 2002

      43 Simo, J. C., "Consistent tangent operators for rate independent plasticity" 48 : 101-118, 1985

      44 Buyukozturk, O., "Concrete in biaxial cyclic compression" 110 : 461-476, 1984

      45 Ahmad, S. M., "Complete triaxial stress-strain curves of concrete confined by spiral reinforcement" 108 : 728-742, 1982

      46 Abdelhakim Zendaoui, "Comparison of Different Numerical Models of RC Elements for Predicting the Seismic Performance of Structures" 한국콘크리트학회 10 (10): 461-478, 2016

      47 Menchel, K., "Comparison and study of different progressive collapse simulation techniques for RC structures" 135 : 685-697, 2009

      48 Biolzi, L., "Bending-shear response of self-consolidating and high-performance reinforced concrete beams" 59 : 399-410, 2014

      49 Mullapudi, T. R. S., "Analysis of reinforced concrete column subjected to combined axial, flexure, shear and torsional loads" 139 : 561-573, 2013

      50 Lew, H. S., "An experimental and computational study of reinforced concrete assemblies under a column removal scenario. NIST Technical Note 1720"

      51 Codina, R., "Alternatives to prevent the failure of RC members under close-in blast loadings" 60 : 96-106, 2016

      52 Richart, F. E., "A study of the failure of concrete under combined compressive stresses" Engineering Experiment Station, University of Illinois 1928

      53 Comi, C., "A non-local model with tension and compression damage mechanisms" 20 : 1-22, 2001

      54 Bao, J. Q., "A new generalized Drucker-Prager flow rule for concrete under compression" 56 : 2076-2082, 2013

      55 Oliveira, R. S., "A layered finite element for reinforced concrete beams with bond-slip effects" 30 : 245-252, 2008

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2011-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.81 0.92 1.47
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.25 1.17 0.488 0.24
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼