RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      CNN을 사용한 차선검출 시스템 = Lane Detection System using CNN

      한글로보기

      https://www.riss.kr/link?id=A102310196

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Lane detection is a widely researched topic. Although simple road detection is easily achieved by previous methods, lane detection becomes very difficult in several complex cases involving noisy edges. To address this, we use a Convolution neural netw...

      Lane detection is a widely researched topic. Although simple road detection is easily achieved by previous methods, lane detection becomes very difficult in several complex cases involving noisy edges. To address this, we use a Convolution neural network (CNN) for image enhancement. CNN is a deep learning method that has been very successfully applied in object detection and recognition. In this paper, we introduce a robust lane detection method based on a CNN combined with random sample consensus (RANSAC) algorithm. Initially, we calculate edges in an image using a hat shaped kernel, then we detect lanes using the CNN combined with the RANSAC. In the training process of the CNN, input data consists of edge images and target data is images that have real white color lanes on an otherwise black background. The CNN structure consists of 8 layers with 3 convolutional layers, 2 subsampling layers and multi-layer perceptron (MLP) of 3 fully-connected layers. Convolutional and subsampling layers are hierarchically arranged to form a deep structure. Our proposed lane detection algorithm successfully eliminates noise lines and was found to perform better than other formal line detection algorithms such as RANSAC

      더보기

      참고문헌 (Reference)

      1 김현구, "지능형 자동차의 적응형 제어를 위한 차선인식" 대한임베디드공학회 4 (4): 180-189, 2009

      2 김병수, "도로 환경 변화에 강인한 차선 검출 방법" 대한전자공학회 49 (49): 88-93, 2012

      3 A. Fischer, "Training Restricted Boltzmann Machines : An Introduction" 47 (47): 25-39, 2014

      4 F. Rosenblatt, "The Perceptron : a Probabilistic Model for Information Storage and Organization in The Brain" 65 (65): 386-408, 1958

      5 D.W. Ruck, "The Multilayer Perceptron as An Approximation to A Bayes Optimal Discriminant Function" 1 (1): 296-298, 1990

      6 K. ZuWhan, "Robust Lane Detection and Tracking in Challenging Scenarios" 9 (9): 16-26, 2008

      7 A.F. Martin, "Random Sample Consensus : a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography" 24 (24): 381-395, 1981

      8 D.E. Rumelhart, "Learning Representations by Back-propagating Errors" 1988

      9 D.E. Rumelhart, "Learning Representations by Back-propagating Errors" 1988

      10 Y. Bin, "Lane Boundary Detection Using A Multiresolution Hough Transform" 2 : 748-751, 1997

      1 김현구, "지능형 자동차의 적응형 제어를 위한 차선인식" 대한임베디드공학회 4 (4): 180-189, 2009

      2 김병수, "도로 환경 변화에 강인한 차선 검출 방법" 대한전자공학회 49 (49): 88-93, 2012

      3 A. Fischer, "Training Restricted Boltzmann Machines : An Introduction" 47 (47): 25-39, 2014

      4 F. Rosenblatt, "The Perceptron : a Probabilistic Model for Information Storage and Organization in The Brain" 65 (65): 386-408, 1958

      5 D.W. Ruck, "The Multilayer Perceptron as An Approximation to A Bayes Optimal Discriminant Function" 1 (1): 296-298, 1990

      6 K. ZuWhan, "Robust Lane Detection and Tracking in Challenging Scenarios" 9 (9): 16-26, 2008

      7 A.F. Martin, "Random Sample Consensus : a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography" 24 (24): 381-395, 1981

      8 D.E. Rumelhart, "Learning Representations by Back-propagating Errors" 1988

      9 D.E. Rumelhart, "Learning Representations by Back-propagating Errors" 1988

      10 Y. Bin, "Lane Boundary Detection Using A Multiresolution Hough Transform" 2 : 748-751, 1997

      11 D. H. Ballard, "Generalizing The Hough Transform to Detect Arbitrary Shapes" 13 (13): 111-122, 1981

      12 S. Lawrence, "Face Recognition : A Convolutional Neural-network Approach" 8 (8): 98-113, 1997

      13 A. Borkar, "A Novel Lane Detection System with Efficient Ground Truth Generation" 13 (13): 365-374, 2012

      14 W.S. McCulloch, "A Logical Calculus of The Ideas Immanent in Nervous Activity" 5 (5): 115-133, 1943

      15 G. Hinton, "A Fast Learning Algorithm for Deep Belief Nets" 18 (18): 1527-1554, 2006

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2028 평가예정 재인증평가 신청대상 (재인증)
      2022-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2014-07-03 학술지명변경 외국어명 : Journal of IEMEK -> IEMEK Journal of Embedded Systems and Applications KCI등재
      2012-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2011-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.22
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.22 0.18 0.415 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼