RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE KCI등재

      Comparing an Instrumented Posterior Fixation System with Rigid and Semi-Flexible Rods using Finite Element Analysis

      한글로보기

      https://www.riss.kr/link?id=A107607111

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this study finite element model of the human lumbar spinal segments (L2-L5) was developed to parametrically examine the stiffness of a dynamic stabilization device and its influence on the mobility of adjacent intervertebral segments. Five models were analyzed and compared: (1) a lumbar spine with intact discs, a reference; (2) a fused spine with a fixation device following interbody fusion and total laminectomy; (3) a spine stabilized with a dynamic stabilization device following total laminectomy; and (4) an additional vertically parallel paired dynamic posterior fixator and paired rigid fixator implemented at levels L3-L5. The disc pressure on the adjacent segments in the fused spine was greater than that of the intact spine, but the disc pressure of the dynamically stabilized spine was similar to that of the intact spine. The use of dynamic stabilization devices restored functionality more closely to that of the intact spine compared to the fused spine. The stiffness values utilized in the device were determined to be important design parameters for manufacturing dynamic stabilization devices.
      번역하기

      In this study finite element model of the human lumbar spinal segments (L2-L5) was developed to parametrically examine the stiffness of a dynamic stabilization device and its influence on the mobility of adjacent intervertebral segments. Five models w...

      In this study finite element model of the human lumbar spinal segments (L2-L5) was developed to parametrically examine the stiffness of a dynamic stabilization device and its influence on the mobility of adjacent intervertebral segments. Five models were analyzed and compared: (1) a lumbar spine with intact discs, a reference; (2) a fused spine with a fixation device following interbody fusion and total laminectomy; (3) a spine stabilized with a dynamic stabilization device following total laminectomy; and (4) an additional vertically parallel paired dynamic posterior fixator and paired rigid fixator implemented at levels L3-L5. The disc pressure on the adjacent segments in the fused spine was greater than that of the intact spine, but the disc pressure of the dynamically stabilized spine was similar to that of the intact spine. The use of dynamic stabilization devices restored functionality more closely to that of the intact spine compared to the fused spine. The stiffness values utilized in the device were determined to be important design parameters for manufacturing dynamic stabilization devices.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼