We study congruence properties of the number of cubic partition pairs weighted by the parity of the crank. If we define such number to be c(n), then $c(5n+4){\equiv}0$ (mod 5) and $c(7n+2){\equiv}0$ (mod 7), for all nonnegative integers n.
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A102308451
2015
English
KCI등재,ESCI
학술저널
637-642(6쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
We study congruence properties of the number of cubic partition pairs weighted by the parity of the crank. If we define such number to be c(n), then $c(5n+4){\equiv}0$ (mod 5) and $c(7n+2){\equiv}0$ (mod 7), for all nonnegative integers n.
We study congruence properties of the number of cubic partition pairs weighted by the parity of the crank. If we define such number to be c(n), then $c(5n+4){\equiv}0$ (mod 5) and $c(7n+2){\equiv}0$ (mod 7), for all nonnegative integers n.
NONLINEAR MOTIONS IN A HANGING CABLE
EXISTENCE OF SOLUTION FOR A FRACTIONAL DIFFERENTIAL INCLUSION VIA NONSMOOTH CRITICAL POINT THEORY
FUZZY LATTICES AS FUZZY RELATIONS
MEAN VALUES OF THE HOMOGENEOUS DEDEKIND SUMS