RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      비유사성 측정을 위한 준거리 연산

      한글로보기

      https://www.riss.kr/link?id=A105214893

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Various data analysis, such as classification, clustering, and recommendation, begins by measuring the dissimilarity or distance of data items. The distance relation of the data set can be represented by a distance matrix indicating the distance of the items, but it is difficult to get the distance matrix of some data set. The quasi distance condition satisfies the triangular inequality and is the minimum condition of metric. We propose a matrix operation min_sum that generates a quasi-distance relation in a given data set and generated the theorem about the relation between this operation and the condition for general distance metric. Then we prove that this operation transforms the potential distance matrix intuitively created from the data set into a matrix satisfying the quasi-distance condition. It is confirmed that it is effective as a distance measure as a result of applying voting tendency clustering using 1-year actual voting data of lawmakers.
      번역하기

      Various data analysis, such as classification, clustering, and recommendation, begins by measuring the dissimilarity or distance of data items. The distance relation of the data set can be represented by a distance matrix indicating the distance of th...

      Various data analysis, such as classification, clustering, and recommendation, begins by measuring the dissimilarity or distance of data items. The distance relation of the data set can be represented by a distance matrix indicating the distance of the items, but it is difficult to get the distance matrix of some data set. The quasi distance condition satisfies the triangular inequality and is the minimum condition of metric. We propose a matrix operation min_sum that generates a quasi-distance relation in a given data set and generated the theorem about the relation between this operation and the condition for general distance metric. Then we prove that this operation transforms the potential distance matrix intuitively created from the data set into a matrix satisfying the quasi-distance condition. It is confirmed that it is effective as a distance measure as a result of applying voting tendency clustering using 1-year actual voting data of lawmakers.

      더보기

      참고문헌 (Reference)

      1 Rui Xu, "Survey of Clustering Algorithms" 16 (16): 645-678, 2005

      2 Segaran, "Programming Collective Intelligence: Building Smart Web 2.0, Applications" O'Reilly Media 14-, 2007

      3 J. C. Gower, "Metric and Euclidean Properties of Dissimilarity Coefficients" 3 (3): 5-48, 1986

      4 Drew Conway, "Machine Learning for Hackers" O'Reilly Media 241-, 2012

      5 Charu C. Aggarwal, "Data Clustering Algorithms and Applications" CRC Press 7-, 2014

      6 Guojun Gan, "Data Clustering : Theory, Algorithms, and Applications, Similarity and Dissimilarity Measures, ASA-SIAM Series on Statistics and Applied Probability" 67-106, 2007

      7 Brian S. Everitt, "Cluster Analysis, 5th Ed." John Wiley & Sons, Ltd 49-, 2011

      8 A. D. Gordon, "Classification : Methods for the Exploratory Analysis of Multivariate Data, Measuring Dissimilarity, Chap 2" Chapman and Hall 13-32, 1981

      9 J. C. Gower, "A General Coefficient of Similarity and Some of Its Properties" 27 (27): 857-871, 1971

      1 Rui Xu, "Survey of Clustering Algorithms" 16 (16): 645-678, 2005

      2 Segaran, "Programming Collective Intelligence: Building Smart Web 2.0, Applications" O'Reilly Media 14-, 2007

      3 J. C. Gower, "Metric and Euclidean Properties of Dissimilarity Coefficients" 3 (3): 5-48, 1986

      4 Drew Conway, "Machine Learning for Hackers" O'Reilly Media 241-, 2012

      5 Charu C. Aggarwal, "Data Clustering Algorithms and Applications" CRC Press 7-, 2014

      6 Guojun Gan, "Data Clustering : Theory, Algorithms, and Applications, Similarity and Dissimilarity Measures, ASA-SIAM Series on Statistics and Applied Probability" 67-106, 2007

      7 Brian S. Everitt, "Cluster Analysis, 5th Ed." John Wiley & Sons, Ltd 49-, 2011

      8 A. D. Gordon, "Classification : Methods for the Exploratory Analysis of Multivariate Data, Measuring Dissimilarity, Chap 2" Chapman and Hall 13-32, 1981

      9 J. C. Gower, "A General Coefficient of Similarity and Some of Its Properties" 27 (27): 857-871, 1971

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2008-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2006-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.45 0.45 0.39
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.38 0.35 0.566 0.16
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼