The natural convection heat transfer within a trapezoidal enclosure with parallel cylindrical top and bottom walls at different temperatures and two adiabatic side walls are studied. A finite-difference method has been used to solve the governing equa...
The natural convection heat transfer within a trapezoidal enclosure with parallel cylindrical top and bottom walls at different temperatures and two adiabatic side walls are studied. A finite-difference method has been used to solve the governing equations numerically. The range of parameters studied herein are Prandtl number 0.7, aspect ratio from 0.5 to 4.0, Rayleigh number from $10^3$ to $3{\times}10^4$, enclosure tilt angle from 22.5 to 157.5 degrees. Mean and local Nusselt numbers are presented for discussing heat transfer characteristics within the enclosure. The heat balances for the hot and cold walls are differed by less than 1% for converged solutions, so these results appear to be reasonable.