RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Hydraulic regenerative braking system studies based on a nonlinear dynamic model of a full vehicle

      한글로보기

      https://www.riss.kr/link?id=A105078437

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      To obtain a reasonable match of the main parameters of a hydraulic regenerative braking system and to improve the energy recovery efficiency, this paper establishes the corresponding mathematical models and testbed for a hydraulic regenerative braking...

      To obtain a reasonable match of the main parameters of a hydraulic regenerative braking system and to improve the energy recovery efficiency, this paper establishes the corresponding mathematical models and testbed for a hydraulic regenerative braking system. The proposed system is analysed and verified through simulation and experiments. Then, the linear and nonlinear mathematical models of a full vehicle are built, with joint simulation of the hydraulic regenerative braking system, and the influence of the hydraulic regenerative braking system on braking performance under different running conditions is discussed. The results indicate that the deviations in the simulation results between the linear and nonlinear dynamic models are very small. When the brake deceleration and road adhesion coefficient are 0.2, deviations are within 1.38 %. With an increase in the braking deceleration and road adhesion coefficient, the deviations in braking time and distance between the systems become larger and larger. When the braking deceleration and road adhesion coefficient are 0.7, the deviation reaches 30 %. Finally, with braking energy recovery efficiency and braking distance as the optimization objectives, the nonlinear braking energy recovery system parameters are optimized. After optimization, the energy recovery efficiency of the nonlinear system reaches 76.3 %, and the braking distance is 22.8 m.

      더보기

      참고문헌 (Reference)

      1 Y. Fan, "Vehicle System Dynamics" China Machine Press 2008

      2 L. Binbin, "The research on parallel hydraulic hybrid hydraulic system dynamic characteristics" 6 : 2012

      3 H. Yuting, "Study on braking force distribution strategy for a hydraulic regenerative braking system" 4 (4): 1529-1532, 2014

      4 Y. Shi, "Research on power management strategies for a series hydraulic hybrid vehicle based on fuzzy logic" Jilin University 2014

      5 Y. Gao, "Investigation of the effectiveness of regenerative braking for EV and HEV" SAE 1999

      6 A. Taghavipoura, "Implementation of an optimal control strategy for a hydraulic hybrid vehicle using CMAC and RBF networks" 19 (19): 327-334, 2012

      7 Z. Zhongfan, "Hydraulic drive system" Mechanical Industry Press 1997

      8 T. D. Gillespie, "Fundamentals of Vehicle Dynamics" Society of Automotive Engineer Press 2000

      9 G. Yuan, "Fractional-order fuzzy control method for vehicle nonlinear active suspension" 26 (26): 1403-1408, 2015

      10 N. Xiaobin, "Experiment of energy recovery efficiency and simulation research on EV’s regenerative braking system" 18 (18): 528-533, 2014

      1 Y. Fan, "Vehicle System Dynamics" China Machine Press 2008

      2 L. Binbin, "The research on parallel hydraulic hybrid hydraulic system dynamic characteristics" 6 : 2012

      3 H. Yuting, "Study on braking force distribution strategy for a hydraulic regenerative braking system" 4 (4): 1529-1532, 2014

      4 Y. Shi, "Research on power management strategies for a series hydraulic hybrid vehicle based on fuzzy logic" Jilin University 2014

      5 Y. Gao, "Investigation of the effectiveness of regenerative braking for EV and HEV" SAE 1999

      6 A. Taghavipoura, "Implementation of an optimal control strategy for a hydraulic hybrid vehicle using CMAC and RBF networks" 19 (19): 327-334, 2012

      7 Z. Zhongfan, "Hydraulic drive system" Mechanical Industry Press 1997

      8 T. D. Gillespie, "Fundamentals of Vehicle Dynamics" Society of Automotive Engineer Press 2000

      9 G. Yuan, "Fractional-order fuzzy control method for vehicle nonlinear active suspension" 26 (26): 1403-1408, 2015

      10 N. Xiaobin, "Experiment of energy recovery efficiency and simulation research on EV’s regenerative braking system" 18 (18): 528-533, 2014

      11 김상명, "Evaluation and development of improved braking model for a motor-assisted vehicle using MATLAB/simulink" 대한기계학회 29 (29): 2747-2754, 2015

      12 Hongchang Wang, "Dynamic analysis for the energy storage flywheel system" 대한기계학회 30 (30): 4825-4831, 2016

      13 Y. Aoki, "Development of hydraulic servo brake system for cooperative control with regenerative brake" SAE 2007

      14 E. Nakamura, "Development of electronically controlled brake system for hybrid vehicle" SAE 2002

      15 D. Peng, "Design of hybrid electric vehicle braking control system with target wheel slip ratio control" SAE 2007

      16 W. J. Midgley, "Comparison of regenerative braking technologies for heavy goods vehicles in urban environments" 226 (226): 957-970, 2012

      17 Y. Zhisheng, "Automobile Theory" China Machine Press 2008

      18 Z. Yongming, "A study on the performances of a hybrid hydraulic vehicle in typical urban driving conditions" 11 : 1295-1301, 2014

      19 M. Canova, "A design procedure for alternative energy storage systems for hybrid vehicles" SAE 2011

      20 S. Yun, "A chaos research on vehicle nonlinear suspension system" 30 (30): 57-60, 2008

      21 R. Ramakrishnan, ""Theoretical investigations on the effect of system parameters in series hydraulic hybrid system with hydrostatic regenerative braking"" 대한기계학회 26 (26): 1321-1331, 2012

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼