1 노창균, "영상정합 기술을 활용한 터널관리시스템의 운영 효율성 제고를 위한 콘텐츠 연구" 한국콘텐츠학회 16 (16): 507-515, 2016
2 신휴성, "기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구" 사단법인 한국터널지하공간학회 19 (19): 95-107, 2017
3 김태복, "국도, 고속국도 터널 영상유고감지시스템 성능분석 및 대심도 복층터널 특성반영 방안" 한국정보통신학회 20 (20): 1325-1334, 2016
4 Geiger, A., "Vision meets robotics: The KITTI dataset" 32 (32): 1231-1237, 2013
5 Simonyan, K., "Very deep convolutional networks for large-scale image recognition"
6 National Committee for Land and Transport, "Tunnel accidents increase, but tunnel incident automatic detection system often fails in operation"
7 Everingham, M., "The pascal visual object classes (VOC) challenge" 88 (88): 303-338, 2010
8 Korea Tunneling and Underground Space Association, "Study on revision of installation and operation guideline for hazard mitigation facilities of road tunnels" Ministry of Land Infrastructure and Transport (MOLIT) 2015
9 Samuel, A. L., "Some studies in machine learning using the game of checkers" 3 (3): 210-229, 1959
10 Girshick, R., "Rich feature hierarchies for accurate object detection and semantic segmentation" 580-587, 2014
1 노창균, "영상정합 기술을 활용한 터널관리시스템의 운영 효율성 제고를 위한 콘텐츠 연구" 한국콘텐츠학회 16 (16): 507-515, 2016
2 신휴성, "기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구" 사단법인 한국터널지하공간학회 19 (19): 95-107, 2017
3 김태복, "국도, 고속국도 터널 영상유고감지시스템 성능분석 및 대심도 복층터널 특성반영 방안" 한국정보통신학회 20 (20): 1325-1334, 2016
4 Geiger, A., "Vision meets robotics: The KITTI dataset" 32 (32): 1231-1237, 2013
5 Simonyan, K., "Very deep convolutional networks for large-scale image recognition"
6 National Committee for Land and Transport, "Tunnel accidents increase, but tunnel incident automatic detection system often fails in operation"
7 Everingham, M., "The pascal visual object classes (VOC) challenge" 88 (88): 303-338, 2010
8 Korea Tunneling and Underground Space Association, "Study on revision of installation and operation guideline for hazard mitigation facilities of road tunnels" Ministry of Land Infrastructure and Transport (MOLIT) 2015
9 Samuel, A. L., "Some studies in machine learning using the game of checkers" 3 (3): 210-229, 1959
10 Girshick, R., "Rich feature hierarchies for accurate object detection and semantic segmentation" 580-587, 2014
11 Yoshua, B., "Representation learning: a review and new perspectives" 35 (35): 1798-1828, 2013
12 Mu, Z., "Recall, precision and average precision" Department of Statistics and Actuarial Science, University of Waterloo 30-, 2004
13 Park, J. K., "Object perception methods in image using deep learning" 21 (21): 21-26, 2015
14 Lin, T. Y., "Microsoft coco: Common objects in context" Springer 740-755, 2014
15 Karpathy, A., "Large-scale video classification with convolutional neural networks" 1725-1732, 2014
16 LeCun, Y., "Handwritten digit recognition with a back-propagation network" 396-404, 1990
17 Ministry of Land, Infrastructure and Transport, "Guideline of installation and management of disaster prevention facilities on road tunnels"
18 Ren, S., "Faster R-CNN: Towards real-time object detection with region proposal networks" 28 : 91-99, 2015
19 Girshick, R., "Fast R-CNN" 1440-1448, 2015
20 Srivastava, N., "Dropout: a simple way to prevent neural networks from overfitting" 15 (15): 1929-1958, 2014
21 LeCun, Y., "Deep learning" 521 : 436-444, 2015
22 Choi, J. M., "Converged security market trend report" 7 (7): 13-29, 2010
23 Ministry of Land, Infrastructure and Transport, "Attempt for faultless safety system of road tunnels"
24 Hinton, G. E., "A fast learning algorithm for deep belief nets" 18 (18): 1527-1554, 2006