RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      거칠기 천이 모델을 이용한 초음속 이중 원추 선두부의 열전달 해석

      한글로보기

      https://www.riss.kr/link?id=A107212847

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Laminar to turbulent boundary layer transitions cause increased drag and heat transfer of a vehicle. One of the main causes of the laminar to turbulent boundary layer transition is the transition due to surface roughness, but it is generally not considered. However, in the case of a hypersonic or re-entry vehicle, The high speed and temperature of vehicle result in inadvertent surface roughness. In addition, surface roughness is intentionally used to avoid separation and instability of the boundary layer. This study presents an hypersonic transition model to analyze the laminar to turbulent boundary layer transition due to surface roughness. Computational results were validated by comparing them with the experiment of a subsonic and hypersonic flat plate. The hypersonic biconic nose tip with surface roughness was analyzed using the verified hypersonic transition model, and the change of the transition point and the increase in heat transfer due to the surface roughness were investigated.
      번역하기

      Laminar to turbulent boundary layer transitions cause increased drag and heat transfer of a vehicle. One of the main causes of the laminar to turbulent boundary layer transition is the transition due to surface roughness, but it is generally not consi...

      Laminar to turbulent boundary layer transitions cause increased drag and heat transfer of a vehicle. One of the main causes of the laminar to turbulent boundary layer transition is the transition due to surface roughness, but it is generally not considered. However, in the case of a hypersonic or re-entry vehicle, The high speed and temperature of vehicle result in inadvertent surface roughness. In addition, surface roughness is intentionally used to avoid separation and instability of the boundary layer. This study presents an hypersonic transition model to analyze the laminar to turbulent boundary layer transition due to surface roughness. Computational results were validated by comparing them with the experiment of a subsonic and hypersonic flat plate. The hypersonic biconic nose tip with surface roughness was analyzed using the verified hypersonic transition model, and the change of the transition point and the increase in heat transfer due to the surface roughness were investigated.

      더보기

      참고문헌 (Reference)

      1 Feindt, E.G., "Untersuchungen über die Abhängigkeit des Umschlages laminar-turbulent von der Oberflächenrauhigkeit und der Druckverteilung" Hochschule Carolo-Wilhelmina zu Braunschweig 1957

      2 Menter, F.R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications" 32 (32): 1598-1605, 1994

      3 Shin, H.C., "Transition flow analysis using hypersonic transition transport models for three-dimensional scramjet intake" Konkuk. Univ 2017

      4 Frauholz, S., "Transition Prediction for Scramjet Intakes Using the gamma-Re theta_t Model Coupled to Two Turbulence Models" 31 (31): 1404-1422, 2015

      5 Stripf, M., "Surface roughness effects on external heat transfer of a HP turbine vane" 127 (127): 200-208, 2005

      6 Saric, W. S., "Stability and Transition of Three-Dimensional Boundary Layers" 35 : 413-440, 2003

      7 Durbin, P.A., "Rough wall modification of two-layer k− ε" 123 (123): 16-21, 2001

      8 Toro, E.F., "Riemann Solvers and Numerical Methods for Fluid Dynamics : a practical introduction" Springer Science & Business Media 2009

      9 Wilcox, D.C., "Reassessment of the scale-determining equation for advanced turbulence models" 26 (26): 1299-1310, 1988

      10 Liu, Z., "Predicting distributed roughness induced transition with a four-equation laminar kinetic energy transition model" 99 : 105736-, 2020

      1 Feindt, E.G., "Untersuchungen über die Abhängigkeit des Umschlages laminar-turbulent von der Oberflächenrauhigkeit und der Druckverteilung" Hochschule Carolo-Wilhelmina zu Braunschweig 1957

      2 Menter, F.R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications" 32 (32): 1598-1605, 1994

      3 Shin, H.C., "Transition flow analysis using hypersonic transition transport models for three-dimensional scramjet intake" Konkuk. Univ 2017

      4 Frauholz, S., "Transition Prediction for Scramjet Intakes Using the gamma-Re theta_t Model Coupled to Two Turbulence Models" 31 (31): 1404-1422, 2015

      5 Stripf, M., "Surface roughness effects on external heat transfer of a HP turbine vane" 127 (127): 200-208, 2005

      6 Saric, W. S., "Stability and Transition of Three-Dimensional Boundary Layers" 35 : 413-440, 2003

      7 Durbin, P.A., "Rough wall modification of two-layer k− ε" 123 (123): 16-21, 2001

      8 Toro, E.F., "Riemann Solvers and Numerical Methods for Fluid Dynamics : a practical introduction" Springer Science & Business Media 2009

      9 Wilcox, D.C., "Reassessment of the scale-determining equation for advanced turbulence models" 26 (26): 1299-1310, 1988

      10 Liu, Z., "Predicting distributed roughness induced transition with a four-equation laminar kinetic energy transition model" 99 : 105736-, 2020

      11 Langtry, R.B., "Overview of industrial transition modelling in CFX"

      12 Krause, M., "Numerical Analysis of Transition Effects for Scramjet Intake Flows" RWTH Aachen 2008

      13 Deveikis, W.D., "Local aerodynamic heat transfer and boundary-layer transition on roughened sphere-ellipsoid bodies at Mach number 3.0" National Aeronautics and Space Administration 1961

      14 Nikuradse, J., "Laws of flow in rough pipes" National Advisory Comitee for Aeronautics 1933

      15 Reshotko, E., "Is Retheta/Me a Meaningful Transition Criterion?" 45 (45): 1441-1443, 2007

      16 Schneider, S. P., "Hypersonic Laminar-Turbulent Transition on Circular Cones and Scramjet Forebodies" 40 : 1-50, 2004

      17 Hellsten, A., "Extension of the k-omega-SST turbulence model for flows over rough surfaces" 3577-, 1997

      18 Corke, T.C., "Experiments on transition enhancement by distributed roughness" 29 (29): 3199-3213, 1986

      19 Holden, M., "Experimental studies of surface roughness, entropy swallowing and boundary layer transition effects on the skin friction and heat transfer distribution in high speed flows" 34-, 1982

      20 Langtry, R.B., "Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes" 47 (47): 2894-2906, 2009

      21 Hollis, B.R., "Correlation of Recent and Historical Hemispherical Nose Tip Distributed Roughness Transition Data" 56 (56): 664-686, 2019

      22 Dryden, H.L., "Combined effects of turbulence and roughness on transition" 9 (9): 249-258, 1958

      23 Mee, D.J., "Boundary-layer transition measurements in hypervelocity flows in a shock tunnel" 40 (40): 1542-1548, 2002

      24 Schlichting, H., "Boundary layer theory" Springer 2016

      25 Mack, L.M., "Boundary Layer Linear Stability Theory, In Special Course on Stability and Transition of Laminar Flow" AGARD 1-81, 1984

      26 Bons, J.P., "A review of surface roughness effects in gas turbines" 132 (132): 2010

      27 Langel, C.M., "A computational approach to simulating the effects of realistic surface roughness on boundary layer transition" 0234-, 2014

      28 Langel, C.M., "A Transport Equation Approach to Modeling the Influence of Surface Roughness on Boundary Layer Transition" Sandia National Laboratories 2017

      29 Zhang, X.D., "A Numerical Research on a Compressibility-correlated Langtry's Transition Model for Double Wedge Boundary Layer Flows" 24 (24): 249-257, 2011

      30 Dirling, R.B., "A Method for Computing Roughwall Heat-Transfer Rate on Re-Entry Nose Tips" AIAA 1973

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-06-16 학술지명변경 외국어명 : Jpurnal of Computatuonal Fluids Engineering -> Korean Society of Computatuonal Fluids Engineering KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.2 0.2 0.19
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.16 0.15 0.405 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼