RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      열차풍에 의한 눈입자의 비산과 부유에 관한 수치적 연구

      한글로보기

      https://www.riss.kr/link?id=A107212843

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A High-speed train stirs up snow on its way and the suspended snow particles could be accumulated on the train. Snow accumulation on high-speed trains forms ice which is damaging trains and surrounding facilities. The approach advocated here involves combining the snowdrift model and brown-out model to explain the snow particle entrainment from the ground and coupled particulate-air system. In the suspension layer, this model assumes that the particles remain in a near-equilibrium state under the action of aerodynamic forces. It is replaced by an algebraic model that the entrainment process in the saltation layer. The model is used to analyze the geometrical structure and extent of the snow particles stirred up by high-speed train and show that the geometrical structure of the vortex plays a primary role in governing the extent of the snow particles cloud that is created by the train.
      번역하기

      A High-speed train stirs up snow on its way and the suspended snow particles could be accumulated on the train. Snow accumulation on high-speed trains forms ice which is damaging trains and surrounding facilities. The approach advocated here involves ...

      A High-speed train stirs up snow on its way and the suspended snow particles could be accumulated on the train. Snow accumulation on high-speed trains forms ice which is damaging trains and surrounding facilities. The approach advocated here involves combining the snowdrift model and brown-out model to explain the snow particle entrainment from the ground and coupled particulate-air system. In the suspension layer, this model assumes that the particles remain in a near-equilibrium state under the action of aerodynamic forces. It is replaced by an algebraic model that the entrainment process in the saltation layer. The model is used to analyze the geometrical structure and extent of the snow particles stirred up by high-speed train and show that the geometrical structure of the vortex plays a primary role in governing the extent of the snow particles cloud that is created by the train.

      더보기

      참고문헌 (Reference)

      1 권혁빈, "열차풍에 의한 고속선 자갈비산현상 연구" 한국철도학회 8 (8): 6-14, 2005

      2 윤한빛, "눈 특성에 따른 열차 대차부 눈 부착률 추정에 대한 연구" 한국전산유체공학회 24 (24): 43-53, 2019

      3 권혁빈, "고속열차 하부 착설에 의한 유리창 파손과 기상조건의 관계에 대한 연구" 한국철도학회 23 (23): 135-142, 2020

      4 Bettez, M., "Winter Technologies for High Speed Rail"

      5 Tominaga, Y., "Turbulent Schmidt numbers for CFD analysis with various types of flowfield" 41 (41): 8091-8099, 2007

      6 Uematsu, T., "Three-dimensional numerical simulation ofsnowdrift" (20) : 65-73, 1991

      7 Langleben, M. P., "The terminal velocity of snowflakes" 80 : 174-181, 1954

      8 White, B.R., "Soil Transport by Winds on Mars" 84 (84): 4643-4651, 1979

      9 Cheng, N. S., "Simplified Settling Velocity Formula for Sediment Particle" 123 (123): 149-152, 1997

      10 Pomeroy, J., "Saltation of snow" 26 (26): 1583-1594, 1990

      1 권혁빈, "열차풍에 의한 고속선 자갈비산현상 연구" 한국철도학회 8 (8): 6-14, 2005

      2 윤한빛, "눈 특성에 따른 열차 대차부 눈 부착률 추정에 대한 연구" 한국전산유체공학회 24 (24): 43-53, 2019

      3 권혁빈, "고속열차 하부 착설에 의한 유리창 파손과 기상조건의 관계에 대한 연구" 한국철도학회 23 (23): 135-142, 2020

      4 Bettez, M., "Winter Technologies for High Speed Rail"

      5 Tominaga, Y., "Turbulent Schmidt numbers for CFD analysis with various types of flowfield" 41 (41): 8091-8099, 2007

      6 Uematsu, T., "Three-dimensional numerical simulation ofsnowdrift" (20) : 65-73, 1991

      7 Langleben, M. P., "The terminal velocity of snowflakes" 80 : 174-181, 1954

      8 White, B.R., "Soil Transport by Winds on Mars" 84 (84): 4643-4651, 1979

      9 Cheng, N. S., "Simplified Settling Velocity Formula for Sediment Particle" 123 (123): 149-152, 1997

      10 Pomeroy, J., "Saltation of snow" 26 (26): 1583-1594, 1990

      11 Kwon, H., "Railway damage status and prevention technology in winter" 18 (18): 26-43, 2015

      12 OpenFOAM, "Open-source Field Operation and Manipulation, Software Package, Ver.2.2.0"

      13 Oikawa, S., "One-day observations of snowdrifts around a model cube" 15 (15): 3-11, 1999

      14 Sundsbø, P.A., "Numerical modelling and simulation of snow drift" The Norwegian University Science and Technology 1997

      15 Beyers, J., "Numerical modeling of snow flow characteristics surrounding SANAE IV Research Station, Antarctica" University of Stellenbosch 2004

      16 Wang, W., "Lagrange stochastic model to simulate snow distribution in roofs" 31 (31): 428-434, 2014

      17 Trenker, M., "Investigation of Snow Particle Transportation and Accretion on Vehicles" 3648-, 2006

      18 Phillips, C., "Eulerian simulation of the fluid dynamics of helicopter brownout" 46 (46): 1416-1429, 2009

      19 "EN 14067-6. Railway Applications - Aerodynamics - Part 6: Requirements and test procedures for cross wind assessment"

      20 Tominaga, Y, "Comparison of various revised k-e models and LES applied to flow around a high-rise building model with 1 : 1 : 2 shape placed within the surface boundary layer" 96 : 389-411, 2008

      21 Tominaga, Y., "CFD prediction of snowdrift around a cubic building model" 941-944, 2006

      22 Tominaga, Y., "CFD prediction of flowfield and snowdrift around a building complex in a snowy region" (81) : 273-282, 1999

      23 Longo, R., "CFD dispersion study based on a variable Schmidt formulation for flows around different configurations of ground-mounted buildings" 154 : 336-347, 2019

      24 Tominaga, Y., "CFD Modeling of Snowdrift around a Building : An Overview of Models and Evaluation of a New Approach" 46 (46): 899-910, 2011

      25 Philippe, D., "Applications of "snowind"engineering-climatic wind tunnel methods"

      26 Tominaga, Y., "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings" 96 : 1749-1761, 2008

      27 Wang, J., "A study of snow accumulating on the bogie and the effects of deflectors on the de-icing performance in the bogie region of a high-speed train" 148 : 121-130, 2018

      28 Thiis, K., "A comparison of numerical simulations and full-scale measurements of snowdrifts around buildings" 3 (3): 73-81, 2000

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-06-16 학술지명변경 외국어명 : Jpurnal of Computatuonal Fluids Engineering -> Korean Society of Computatuonal Fluids Engineering KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.2 0.2 0.19
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.16 0.15 0.405 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼