RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보 SCOPUS

      정보적군집 크기를 가진 군집화된 구간 중도절단자료 분석을 위한결합모형의 적용 = Statistical Analysis of Clustered Interval-Censored Data with Informative Cluster Size

      한글로보기

      https://www.riss.kr/link?id=A105203907

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Interval-censored data are commonly found in studies of diseases that progress without symptoms, which require clinical evaluation for detection. Several techniques have been suggested with independent assumption. However, the assumption will not be valid if observations come from clusters. Furthermore, when the cluster size relates to response variables, commonly used methods can bring biased results. For example, in a study on lymphatic filariasis, a parasitic disease where worms make several nests in the infected person's lymphatic vessels and reside until adulthood, the response variable of interest is the nest-extinction times. Since the extinction times of nests are checked by repeated ultrasound examinations, exact extinction times are not observed. Instead, data are composed of two examination points: the last examination time with living worms and the first examination time with dead worms. Furthermore, as Williamson et al. (2008) pointed out, larger nests show a tendency for low clearance rates. This association has been denoted as an informative cluster size. To analyze the relationship between the numbers of nests and interval-censored nest-extinction times, this study proposes a joint model for the relationship between cluster size and clustered interval-censored failure data.
      번역하기

      Interval-censored data are commonly found in studies of diseases that progress without symptoms, which require clinical evaluation for detection. Several techniques have been suggested with independent assumption. However, the assumption will not be v...

      Interval-censored data are commonly found in studies of diseases that progress without symptoms, which require clinical evaluation for detection. Several techniques have been suggested with independent assumption. However, the assumption will not be valid if observations come from clusters. Furthermore, when the cluster size relates to response variables, commonly used methods can bring biased results. For example, in a study on lymphatic filariasis, a parasitic disease where worms make several nests in the infected person's lymphatic vessels and reside until adulthood, the response variable of interest is the nest-extinction times. Since the extinction times of nests are checked by repeated ultrasound examinations, exact extinction times are not observed. Instead, data are composed of two examination points: the last examination time with living worms and the first examination time with dead worms. Furthermore, as Williamson et al. (2008) pointed out, larger nests show a tendency for low clearance rates. This association has been denoted as an informative cluster size. To analyze the relationship between the numbers of nests and interval-censored nest-extinction times, this study proposes a joint model for the relationship between cluster size and clustered interval-censored failure data.

      더보기

      참고문헌 (Reference)

      1 Hoffman, E., "Within-cluster resampling" 88 : 1121-1134, 2001

      2 Turnbull, B.W., "The empirical distribution function with arbitrarily grouped censored and truncated data" 38 : 290-295, 1976

      3 Sun, J., "The Statistical Analysis of Interval-censored Failure Time Data" Springer-Verlag 2006

      4 Zhang, X., "Regression analysis of clustered interval-censored failure time data with informative cluster size" 54 : 1817-1823, 2010

      5 Kim, Y. J., "Regression Analysis of Clustered Interval-Censored Data with Informative Cluster Size, Technical Report" 2010

      6 Williamson, J., "Modeling survival data with informative cluster size" 27 : 543-555, 2008

      7 Cong, X. J., "Marginal analysis of correlated failure time data with informative cluster sizes" 63 : 663-672, 2007

      8 Williamson, J., "Marginal analysis of clustered data when cluster size is informative" 59 : 36-42, 2003

      9 Catalano, P., "Bivariate latent variable models for clustered discrete and continuous outcomes" 87 : 651-658, 1992

      10 Liu, L., "Analysis of longitudinal data in the presence of informative observational times and a dependent terminal event, with application to medical cost data" 64 : 950-958, 2008

      1 Hoffman, E., "Within-cluster resampling" 88 : 1121-1134, 2001

      2 Turnbull, B.W., "The empirical distribution function with arbitrarily grouped censored and truncated data" 38 : 290-295, 1976

      3 Sun, J., "The Statistical Analysis of Interval-censored Failure Time Data" Springer-Verlag 2006

      4 Zhang, X., "Regression analysis of clustered interval-censored failure time data with informative cluster size" 54 : 1817-1823, 2010

      5 Kim, Y. J., "Regression Analysis of Clustered Interval-Censored Data with Informative Cluster Size, Technical Report" 2010

      6 Williamson, J., "Modeling survival data with informative cluster size" 27 : 543-555, 2008

      7 Cong, X. J., "Marginal analysis of correlated failure time data with informative cluster sizes" 63 : 663-672, 2007

      8 Williamson, J., "Marginal analysis of clustered data when cluster size is informative" 59 : 36-42, 2003

      9 Catalano, P., "Bivariate latent variable models for clustered discrete and continuous outcomes" 87 : 651-658, 1992

      10 Liu, L., "Analysis of longitudinal data in the presence of informative observational times and a dependent terminal event, with application to medical cost data" 64 : 950-958, 2008

      11 Finkelstein, D. M., "Analysis of failure time data with dependent interval censoring" 58 : 298-304, 2002

      12 Bellamy, S., "Analysis of clustered and interval censored data from a community-based study in asthma" 34 : 3607-3621, 2005

      13 Dunson, D. B., "A bayesian approach for joint modeling of clusger size and subunit-specific outcome" 59 : 521-530, 2003

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-12-01 평가 등재후보 탈락 (해외등재 학술지 평가)
      2020-12-01 평가 등재후보로 하락 (해외등재 학술지 평가) KCI등재후보
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2012-12-21 학술지명변경 한글명 : 한국통계학회 논문집 -> Communications for Statistical Applications and Methods
      외국어명 : Communications of The Korean Statistical Society -> Communications for Statistical Applications and Methods
      KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-02-05 학술지명변경 외국어명 : The Korean Communications in Statistics -> Communications of The Korean Statistical Society KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.19 0.19 0.17
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.14 0.15 0.392 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼