RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      콘덴츠 분류를 위한 오디오 신호 특징 추출 기술 = The Technology of the Audio Feature Extraction for Classifying Contents

      한글로보기

      https://www.riss.kr/link?id=A101410543

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract) kakao i 다국어 번역

      음성을 비롯하여 음악, 음향 등을 포함하는 오디오 신호는 멀티미디어 콘텐츠를 구성하는 매우 중요한 미디어 타입이며, 미디어 기록 매체와 네트워크의 발전으로 인한 데이터 양의 급격한 증대는 수동적 관리의 어려움을 유발하게 되고, 이로 인해 오디오 신호를 자동으로 구분하는 기술은 매우 중요한 기술로 인식되고 있다. 다양한 오디오 신호를 분류하기 위한 오디오 신호의 특징을 추출하는 기술은 많은 연구들을 통해 발전하여 왔으며, 본 논문은 오디오 콘텐츠 자동 분류에서 높은 성능을 갖는 오디오 신호 특징 추출에 대해서 분석한다. 그리고 특징 분류기 중에서 안정적인 성능을 가지는 SVM을 사용한 오디오 신호 분류 방법을 알아본다.
      번역하기

      음성을 비롯하여 음악, 음향 등을 포함하는 오디오 신호는 멀티미디어 콘텐츠를 구성하는 매우 중요한 미디어 타입이며, 미디어 기록 매체와 네트워크의 발전으로 인한 데이터 양의 급격한 ...

      음성을 비롯하여 음악, 음향 등을 포함하는 오디오 신호는 멀티미디어 콘텐츠를 구성하는 매우 중요한 미디어 타입이며, 미디어 기록 매체와 네트워크의 발전으로 인한 데이터 양의 급격한 증대는 수동적 관리의 어려움을 유발하게 되고, 이로 인해 오디오 신호를 자동으로 구분하는 기술은 매우 중요한 기술로 인식되고 있다. 다양한 오디오 신호를 분류하기 위한 오디오 신호의 특징을 추출하는 기술은 많은 연구들을 통해 발전하여 왔으며, 본 논문은 오디오 콘텐츠 자동 분류에서 높은 성능을 갖는 오디오 신호 특징 추출에 대해서 분석한다. 그리고 특징 분류기 중에서 안정적인 성능을 가지는 SVM을 사용한 오디오 신호 분류 방법을 알아본다.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼