Let a and b be nonnegative integers with 2 $\leq$ a < b, and let G be a Hamiltonian graph of order n with n > $\frac{(a+b-5)(a+b-3)}{b-2}$. An [a, b]-factor F of G is called a Hamiltonian [a, b]-factor if F contains a Hamiltonian cycle. In this ...

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A100777099
2010
English
Graph ; independence number ; minimum degree ; [a ; b]-factor ; Hamiltonian [a ; b]-factor
KCI등재
학술저널
325-331(7쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
Let a and b be nonnegative integers with 2 $\leq$ a < b, and let G be a Hamiltonian graph of order n with n > $\frac{(a+b-5)(a+b-3)}{b-2}$. An [a, b]-factor F of G is called a Hamiltonian [a, b]-factor if F contains a Hamiltonian cycle. In this ...
Let a and b be nonnegative integers with 2 $\leq$ a < b, and let G be a Hamiltonian graph of order n with n > $\frac{(a+b-5)(a+b-3)}{b-2}$. An [a, b]-factor F of G is called a Hamiltonian [a, b]-factor if F contains a Hamiltonian cycle. In this paper, it is proved that G has a Hamiltonian [a, b]-factor if $\delta(G)\;\geq\;\frac{(a-1)n+a+b-3)}{a+b-3}$ and $\delta(G)$ > $\frac{(a-2)n+2{\alpha}(G)-1)}{a+b-4}$.
INTUITIONISTIC FUZZY IDEALS IN ORDERED SEMIGROUPS
ASYMPTOTIC BEHAVIOR OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENT
QUOTIENT SUBSTRUCTURES OF R-GROUPS
DATA MINING AND PREDICTION OF SAI TYPE MATRIX PRECONDITIONER