RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Numerical Research on the Unsteady Evolution Characteristics of Blade Tip Vortex for Helicopter Rotor in Forward Flight

      한글로보기

      https://www.riss.kr/link?id=A107156145

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A high-resolution numerical method is developed to simulate the generation and evolution progress of the blade tip vortex for helicopter rotor in forward flight. In the current method, the Navier–Stokes equation is adopted as the governing equation. Along with fifth order WENO scheme, the upwind Roe scheme is employed for the calculation of convective flux. A dual time-stepping scheme is utilized for time discretization, and the LU-SGS scheme is used for every pseudo time step. The Spalart–Allmaras model is selected as the turbulence model. To trim the rotor in forward flight, a high-efficiency trim method is introduced to the current solver. Results for cases in different forward flight conditions show that trimming process has a great influence on the evolution characteristics of the rotor tip vortex. Compared with the cases with different Mach numbers, the evolution characteristics of rotor tip vortex have larger difference for cases with different advance ratios.
      번역하기

      A high-resolution numerical method is developed to simulate the generation and evolution progress of the blade tip vortex for helicopter rotor in forward flight. In the current method, the Navier–Stokes equation is adopted as the governing equation....

      A high-resolution numerical method is developed to simulate the generation and evolution progress of the blade tip vortex for helicopter rotor in forward flight. In the current method, the Navier–Stokes equation is adopted as the governing equation. Along with fifth order WENO scheme, the upwind Roe scheme is employed for the calculation of convective flux. A dual time-stepping scheme is utilized for time discretization, and the LU-SGS scheme is used for every pseudo time step. The Spalart–Allmaras model is selected as the turbulence model. To trim the rotor in forward flight, a high-efficiency trim method is introduced to the current solver. Results for cases in different forward flight conditions show that trimming process has a great influence on the evolution characteristics of the rotor tip vortex. Compared with the cases with different Mach numbers, the evolution characteristics of rotor tip vortex have larger difference for cases with different advance ratios.

      더보기

      참고문헌 (Reference)

      1 Thompson TL, "Visualization and measurement of the tip vortex core of a rotor blade in hover" 25 (25): 1113-1121, 1988

      2 Srinivasan GR, "TURNS : a free-wake Euler/Navier–Stokes numerical method for helicopter rotors" 31 (31): 959-962, 1993

      3 Duraisamy K, "Studies in tip vortex formation, evolution and control" University of Maryland 2005

      4 Biava M, "Single blade computations of helicopter rotors in forward flight" AIAA 2003

      5 Vasilescu R, "Rotor wake capture improvement based on the controlled grid resolution" AIAA 2006

      6 RizzettaDP, "Numerical investigation of synthetic-jet flowfields" 37 (37): 919-927, 1999

      7 Rizzi A, "Numerical implementation of solid boundary conditions for the Euler equations" 58 (58): 301-304, 1978

      8 Pomin H, "Navier-Stokes analysis of helicopter rotor aerodynamics in hover and forward flight" 39 (39): 813-821, 2002

      9 Vasilescu R, "Modeling of piezoelectrically modulated/vectored blowing for a wing section" AIAA 2003

      10 Yoon S, "Lower-upper symmetric-Gauss–Seidel method for the Euler and Navier–Stokes equations" 26 (26): 1025-1026, 1988

      1 Thompson TL, "Visualization and measurement of the tip vortex core of a rotor blade in hover" 25 (25): 1113-1121, 1988

      2 Srinivasan GR, "TURNS : a free-wake Euler/Navier–Stokes numerical method for helicopter rotors" 31 (31): 959-962, 1993

      3 Duraisamy K, "Studies in tip vortex formation, evolution and control" University of Maryland 2005

      4 Biava M, "Single blade computations of helicopter rotors in forward flight" AIAA 2003

      5 Vasilescu R, "Rotor wake capture improvement based on the controlled grid resolution" AIAA 2006

      6 RizzettaDP, "Numerical investigation of synthetic-jet flowfields" 37 (37): 919-927, 1999

      7 Rizzi A, "Numerical implementation of solid boundary conditions for the Euler equations" 58 (58): 301-304, 1978

      8 Pomin H, "Navier-Stokes analysis of helicopter rotor aerodynamics in hover and forward flight" 39 (39): 813-821, 2002

      9 Vasilescu R, "Modeling of piezoelectrically modulated/vectored blowing for a wing section" AIAA 2003

      10 Yoon S, "Lower-upper symmetric-Gauss–Seidel method for the Euler and Navier–Stokes equations" 26 (26): 1025-1026, 1988

      11 Han YQ, "Investigation of helicopter rotor-blade-tip-vortex alleviation using a slotted tip" 42 (42): 524-535, 2004

      12 Duraisamy K, "High resolution computational and experimental study of hovering rotor tip vortex formation" 45 (45): 2593-2602, 2007

      13 Caradonna FX, "Experimental and analytical studies of a model helicopter rotor in hover" NASA 1981

      14 Bhagwat MJ, "Correlation of helicopter rotor tip vortex measurements" 38 (38): 301-308, 2015

      15 Duraisamy K, "Control of helicopter rotor tip vortex structure using blowing devices" AHS International, Inc 2004

      16 Strawn R, "Computational modeling of hovering rotor and wake aerodynamics" 39 (39): 786-793, 2002

      17 Poling DR, "Blade–vortex interaction" 27 (27): 694-699, 1989

      18 Roe PL, "Approximate Riemann solvers, parameter vectors, and difference schemes" 43 (43): 357-372, 1981

      19 Borges R, "An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws" 227 (227): 3191-3211, 2008

      20 Yu YH, "Aerodynamics and acoustics of rotor blade-vortex interactions" 32 (32): 970-977, 1995

      21 Zhao JG, "A viscous vortex particle model for rotor wake and interference analysis" 55 (55): 1-14, 2010

      22 Liu ZJ, "A study of rotor tip vortex structure alteration techniques" 38 (38): 473-477, 2001

      23 Spalart PR, "A one-equation turbulence model for aerodynamic flows" AIAA 1992

      24 Zhou Ye, "A High-efficiency Trim Method for CFD Numerical Calculation of Helicopter Rotors" 한국항공우주학회 18 (18): 186-196, 2017

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2011-01-01 평가 등재후보학술지 선정 (기타) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.37 0.2 0.3
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.24 0.394 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼