RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      야외지질답사와 과학적 모델링에서 중학생들의 표상적 능력에 관한 이해

      한글로보기

      https://www.riss.kr/link?id=A107395254

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      이 연구는 과학적 모델을 적용한 두 차례 야외지질 학습(관악산과 한탄강 형성과정)에서 학생들이 보여주 는 표상적 능력에 대한 이해를 목적으로 하였다. 수도 권 소재 대학부설 영재원 10명의 학생들이 자발적으로 참여하였다. 야외학습환경과 교실학습환경에서 학생 들이 작성한 서면 자료, 수업 과정에 대한 모든 영상 녹음 및 음성 녹음 자료, 수업 종료 후 면담 자료를 수 집하였다. 표상적 능력 수준을 구분하는 분석틀로 학 생들의 표상 능력의 단계를 구분하고 과학적 모델 형 성 과정에서 표상적 능력의 수준과 최종모델과의 결과 론적인 해석을 덧붙였다. 그 결과 학생들의 표상적 능 력은 1~6수준까지 다양하게 나타났다. 다만, 학생들은 야외학습환경에서 교실학습환경보다 상대적으로 낮은 수준의 표상적 능력을 보였다. 즉, 야외학습환경에서 상대적으로 낮은 수준의 표상적 능력으로부터 시작되 어 교실학습환경에서 학생들이 표상적 능력의 수준을 높인 것을 결과론적으로 보였다. 궁극적으로 학생들의 표상적 능력을 이해하는 것은 과학적 모델 형성과정에 서 현상을 설명하기 위한 도구로써 학술적인 의미를 지녔다.
      번역하기

      이 연구는 과학적 모델을 적용한 두 차례 야외지질 학습(관악산과 한탄강 형성과정)에서 학생들이 보여주 는 표상적 능력에 대한 이해를 목적으로 하였다. 수도 권 소재 대학부설 영재원 10...

      이 연구는 과학적 모델을 적용한 두 차례 야외지질 학습(관악산과 한탄강 형성과정)에서 학생들이 보여주 는 표상적 능력에 대한 이해를 목적으로 하였다. 수도 권 소재 대학부설 영재원 10명의 학생들이 자발적으로 참여하였다. 야외학습환경과 교실학습환경에서 학생 들이 작성한 서면 자료, 수업 과정에 대한 모든 영상 녹음 및 음성 녹음 자료, 수업 종료 후 면담 자료를 수 집하였다. 표상적 능력 수준을 구분하는 분석틀로 학 생들의 표상 능력의 단계를 구분하고 과학적 모델 형 성 과정에서 표상적 능력의 수준과 최종모델과의 결과 론적인 해석을 덧붙였다. 그 결과 학생들의 표상적 능 력은 1~6수준까지 다양하게 나타났다. 다만, 학생들은 야외학습환경에서 교실학습환경보다 상대적으로 낮은 수준의 표상적 능력을 보였다. 즉, 야외학습환경에서 상대적으로 낮은 수준의 표상적 능력으로부터 시작되 어 교실학습환경에서 학생들이 표상적 능력의 수준을 높인 것을 결과론적으로 보였다. 궁극적으로 학생들의 표상적 능력을 이해하는 것은 과학적 모델 형성과정에 서 현상을 설명하기 위한 도구로써 학술적인 의미를 지녔다.

      더보기

      다국어 초록 (Multilingual Abstract)

      The purpose of this study was to understand students’ representational competence while they engaged in learning in geological field trips with scientific models and modeling(Mt. Gwanak and the Hantan-river were formed). Ten students agreed to participate in this study voluntarily. They were attending the Institute of Gifted Education in the Seoul Metropolitan area. The data were collected for all students’ activities during field trips and modeling activities using simultaneous video and voice recording, the interview after classes, written data(note) made by the students. The analysis framework that distinguished levels of representational competence and added the resulting interpretation with the final models in the process of scientific models. Results suggested that representational competence levels varied from one to six. However, students showed relatively low levels of representational competence in outdoor learning environments than indoor learning environments. In other words, it began with a relatively low level of representational competence in outdoor class. Then students developed a higher level of representational competence indoor class. Ultimately, we need to understand students’ representational competence implies a tool to explain phenomena in the process of modeling activities.
      번역하기

      The purpose of this study was to understand students’ representational competence while they engaged in learning in geological field trips with scientific models and modeling(Mt. Gwanak and the Hantan-river were formed). Ten students agreed to parti...

      The purpose of this study was to understand students’ representational competence while they engaged in learning in geological field trips with scientific models and modeling(Mt. Gwanak and the Hantan-river were formed). Ten students agreed to participate in this study voluntarily. They were attending the Institute of Gifted Education in the Seoul Metropolitan area. The data were collected for all students’ activities during field trips and modeling activities using simultaneous video and voice recording, the interview after classes, written data(note) made by the students. The analysis framework that distinguished levels of representational competence and added the resulting interpretation with the final models in the process of scientific models. Results suggested that representational competence levels varied from one to six. However, students showed relatively low levels of representational competence in outdoor learning environments than indoor learning environments. In other words, it began with a relatively low level of representational competence in outdoor class. Then students developed a higher level of representational competence indoor class. Ultimately, we need to understand students’ representational competence implies a tool to explain phenomena in the process of modeling activities.

      더보기

      목차 (Table of Contents)

      • ABSTRACT
      • Ⅰ. 서론
      • Ⅱ. 연구 방법
      • 1. 연구 절차 및 연구 참여자
      • 2. 야외지질답사 프로그램 개발 및 수정 : 관악산과 한탄강
      • ABSTRACT
      • Ⅰ. 서론
      • Ⅱ. 연구 방법
      • 1. 연구 절차 및 연구 참여자
      • 2. 야외지질답사 프로그램 개발 및 수정 : 관악산과 한탄강
      • 3. 과학적 모델 및 모델링 수업 : 관악산과 한탄강
      • 4. 용어 정리
      • 5. 자료 수집
      • 6. 자료 분석
      • Ⅲ. 연구 결과
      • 1. 야외지질학습에서 학생들의 표상적 능력 수준은 어떠한가
      • 2. 학생들의 표상적 능력 수준은 과학적 모델 형성과 어떤 연관성을 보이는가
      • Ⅳ. 결론 및 제언
      • 국문요약
      • References
      더보기

      참고문헌 (Reference)

      1 김찬종, "한탄강 국가지질공원을 활용한 과학적 모델 및 모델링의 야외지질학습 적용" 한국현장과학교육학회 14 (14): 175-192, 2020

      2 최윤성, "과학적 모델의 사회적 구성을 활용한 야외지질학습 개발 및 적용" 한국지구과학회 39 (39): 178-192, 2018

      3 교육부, "개정 과학과 교육과정"

      4 Gilbert, J., "visualization in science education" Springer 9-27, 2005

      5 Meier, B., "What's up with God? Vertical space as a representation of the divine" 93 (93): 699-, 2007

      6 Oh, P., "What teachers of science need to know about models: An overview" 33 (33): 1109-1130, 2011

      7 Reiner, M., "Visualization: Theory and practice in science education" Springer 73-84, 2008

      8 Botzer, G., "Visualization in science education" Springer 147-168, 2005

      9 Kozma, R., "Visualization in science education" Springer 9-27, 2007

      10 Takayama, K., "Visualization in science education" Springer 217-251, 2005

      1 김찬종, "한탄강 국가지질공원을 활용한 과학적 모델 및 모델링의 야외지질학습 적용" 한국현장과학교육학회 14 (14): 175-192, 2020

      2 최윤성, "과학적 모델의 사회적 구성을 활용한 야외지질학습 개발 및 적용" 한국지구과학회 39 (39): 178-192, 2018

      3 교육부, "개정 과학과 교육과정"

      4 Gilbert, J., "visualization in science education" Springer 9-27, 2005

      5 Meier, B., "What's up with God? Vertical space as a representation of the divine" 93 (93): 699-, 2007

      6 Oh, P., "What teachers of science need to know about models: An overview" 33 (33): 1109-1130, 2011

      7 Reiner, M., "Visualization: Theory and practice in science education" Springer 73-84, 2008

      8 Botzer, G., "Visualization in science education" Springer 147-168, 2005

      9 Kozma, R., "Visualization in science education" Springer 9-27, 2007

      10 Takayama, K., "Visualization in science education" Springer 217-251, 2005

      11 Clement, J., "Visualization in science education" Springer 169-184, 2005

      12 Kozma, R., "Visualization in science education" Springer 121-145, 2005

      13 Mathewson, J., "Visual-spatial thinking : An aspect of science overlooked by educators" 83 (83): 33-54, 1999

      14 Cook, M., "Visual representations in science education : The influence of prior knowledge and cognitive load theory on instructional design principles" 90 (90): 1073-1091, 2006

      15 Patrick, M., "Visual repre-sentations of DNA replication: Middle grades students’ perceptions and interpretations" 14 (14): 353-365, 2005

      16 Trumbo, J., "Visual literacy and science communication" 20 (20): 409-425, 1999

      17 Zazkis, R., "Understanding primes : The role of representation" 35 (35): 164-186, 2004

      18 Van Joolingen, W., "Understanding elementary astronomy by mak-ing drawing-based models" 24 (24): 256-264, 2015

      19 Ubben, I., "Towards a framework for representational competence in science education" Springer 229-245, 2018

      20 Mishra, C., "Towards a framework for representational competence in science education" Springer 177-201, 2018

      21 Daniel, K., "Towards a framework for representational competence in science education" Springer 3-11, 2018

      22 Brandstetter, T., "Time machines : Model experiments in geology" 53 (53): 135-145, 2011

      23 Collins, A., "The second educational revolution : Rethinking education in the age of technology" 26 (26): 18-27, 2010

      24 Meyer, M., "The roles of representation in school mathe-matics" National Council of Teacher in Mathematics 238-250, 2001

      25 Cuoco, A., "The roles of repre-sentation in school mathematics" National Council of Teachers 2001

      26 Bodner, G., "The Purdue visualization of rotations test" 2 (2): 1-17, 1997

      27 Harle, M., "Students' understanding of primary and secondary protein structure : Drawing secon-dary protein structure reveals student understanding better than simple recognition of structures" 41 (41): 369-376, 2013

      28 Ferk, V., "Students' understanding of molecular structure representations" 25 (25): 1227-1245, 2003

      29 Harle, M., "Students' understanding of external representations of the potassium ion channel protein part II : Structure-function relationships and fragmented knowledge" 40 (40): 357-363, 2012

      30 Gross, D., "Stabilizer information in-equalities from phase space distributions" 54 (54): 082201-, 2013

      31 DeBoer, G., "Scientific literacy : Another look at its historical and contemporary meanings and its relation-ship to science education reform" 37 (37): 582-601, 2000

      32 Laugksch, R., "Scientific literacy : A conceptual overview" 84 (84): 71-94, 2000

      33 Zbiek, R., "Research on technology in mathematics education : A perspective of constructs" 2 : 1169-1207, 2007

      34 Reiss, M., "Research in science education-Past, Present, and Future" Springer 101-106, 2001

      35 Tsui, C., "Multiple representations in biological education" Springer 3-18, 2013

      36 Halverson, K., "Multiple representations in biological education" Springer 185-201, 2013

      37 Anderson, T., "Multiple Representations in Biological Education" Springer 19-38, 2013

      38 Morgan, M., "Models as mediators" Cambridge University Press 347-, 1999

      39 Baetu, T., "Models and the mosaic of scientific knowledge. The case of immunology" 45 : 49-56, 2014

      40 Gilbert, J., "Models in explanations, Part 1: Horses for courses?" 20 (20): 83-97, 1998

      41 Louca, L., "Modeling-based learning in science education : Cognitive, metacognitive, social, material and epistemological contributions" 64 (64): 471-492, 2012

      42 Nersessian, N., "Model-based reasoning in scientific discovery" Springer 5-22, 1999

      43 Van Borkulo, S., "Model-based approaches to learning" Brill Sense 179-195, 2009

      44 Upmeier zu Belzen, A., "Model com-petence in biology class" 16 : 41-57, 2010

      45 Anderson, K., "Maps as representations : Expert novice comparison of projection understanding" 20 (20): 283-321, 2002

      46 Woleck, K., "Listen to their pictures: An investigation of children’s mathematical drawings" National Council of Teachers of Mathematics 215-227, 2001

      47 Van Lehn, K., "Learning how to construct models of dynamic systems : An initial evaluation of the dragoon intelligent tutoring system" 10 (10): 154-167, 2016

      48 Koponen, I., "International hand-book of research in history, philosophy and science teach-ing" Springer 1143-1169, 1143

      49 Halverson, K., "Improving tree-thinking one learnable skill at a time" 4 (4): 95-106, 2011

      50 Matuk, C., "Images of evolution" 33 (33): E54-E61, 2007

      51 Oreskes, N., "From scaling to simulation: Changing meanings and ambitions of models in geology" Duke University Press 93-124, 2007

      52 Hackling, M., "Expert and novice sol-utions of genetic pedigree problems" 25 (25): 531-546, 1988

      53 Graveleau, F., "Experimental modelling of orogenic wedges : A review" 538 : 1-66, 2012

      54 Yore, L., "Epilogue: Plotting a research agenda for multiple representations, multiple modality, and multimodal representational competency" 40 (40): 93-101, 2010

      55 Roth, W., "Differences in graph-related practices between high school biology textbooks and scientific ecology journals" 36 (36): 977-1019, 1999

      56 Jee, B., "Commentary : Analogical thinking in geoscience education" 58 (58): 2-13, 2010

      57 Penner, D., "Cognition, computers, and synthetic sci-ence: Building knowledge and meaning through modeling" 25 (25): 1-35, 2001

      58 Chi, M., "Categorization and representation of physics problems by experts and novices" 5 (5): 121-152, 1981

      59 Windschitl, M., "Beyond the scientific method : Model-based inquiry as a new paradigm of preference for school science investigations" 92 (92): 941-967, 2008

      60 Chamizo, J., "A new definition of models and model-ing in chemistry’s teaching" 22 (22): 1613-1632, 2013

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2028 평가예정 재인증평가 신청대상 (재인증)
      2022-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2015-01-01 평가 등재후보학술지 유지 (계속평가) KCI등재후보
      2014-01-08 학술지명변경 외국어명 : 미등록 -> Journal of the Korean Society of Earth Science Education KCI등재후보
      2013-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2011-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2010-02-11 학회명변경 한글명 : 한국지구과학교육학회 -> 대한지구과학교육학회
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 1.04 1.11
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.96 0.85 1.567 0.26
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼