RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보

      Similarity Analysis of Hospitalization using Crowding Distance

      한글로보기

      https://www.riss.kr/link?id=A104585546

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      With the growing use of big data and data mining, it serves to understand how such techniques can be used to understand various relationships in the healthcare field. This study uses hierarchical methods of data analysis to explore similarities in hospitalization across several New York state counties. The study utilized methods of measuring crowding distance of data for age-specific hospitalization period. Crowding distance is defined as the longest distance, or least similarity, between urban cities. It is expected that the city of Clinton have the greatest distance, while Albany the other cities are closer because they are connected by the shortest distance to each step. Similarities were stronger across hospital stays categorized by age. Hierarchical clustering can be applied to predict the similarity of data across the 10 cities of hospitalization with the measurement of crowding distance.
      In order to enhance the performance of hierarchical clustering, comparison can be made across congestion distance when crowding distance is applied first through the application of converting text to an attribute vector. Measurements of similarity between two objects are dependent on the measurement method used in clustering but is distinguished from the similarity of the distance; where the smaller the distance value the more similar two things are to one other. By applying this specific technique, it is found that the distance between crowding is reduced consistently in relationship to similarity between the data increases to enhance the performance of the experiments through the application of special techniques. Furthermore, through the similarity by city hospitalization period, when the construction of hospital wards in cities, by referring to results of experiments, or predict possible will land to the extent of the size of the hospital facilities hospital stay is expected to be useful in efficiently managing the patient in a similar area.
      번역하기

      With the growing use of big data and data mining, it serves to understand how such techniques can be used to understand various relationships in the healthcare field. This study uses hierarchical methods of data analysis to explore similarities in hos...

      With the growing use of big data and data mining, it serves to understand how such techniques can be used to understand various relationships in the healthcare field. This study uses hierarchical methods of data analysis to explore similarities in hospitalization across several New York state counties. The study utilized methods of measuring crowding distance of data for age-specific hospitalization period. Crowding distance is defined as the longest distance, or least similarity, between urban cities. It is expected that the city of Clinton have the greatest distance, while Albany the other cities are closer because they are connected by the shortest distance to each step. Similarities were stronger across hospital stays categorized by age. Hierarchical clustering can be applied to predict the similarity of data across the 10 cities of hospitalization with the measurement of crowding distance.
      In order to enhance the performance of hierarchical clustering, comparison can be made across congestion distance when crowding distance is applied first through the application of converting text to an attribute vector. Measurements of similarity between two objects are dependent on the measurement method used in clustering but is distinguished from the similarity of the distance; where the smaller the distance value the more similar two things are to one other. By applying this specific technique, it is found that the distance between crowding is reduced consistently in relationship to similarity between the data increases to enhance the performance of the experiments through the application of special techniques. Furthermore, through the similarity by city hospitalization period, when the construction of hospital wards in cities, by referring to results of experiments, or predict possible will land to the extent of the size of the hospital facilities hospital stay is expected to be useful in efficiently managing the patient in a similar area.

      더보기

      참고문헌 (Reference)

      1 Disease Control Division, Korea Research Society, "the study of specimens correction and weight calculation of discharge patient survey" 2007

      2 Jun-ho Lim, "medical data mining using association rules" School of Computer & Information Technology Korea University 2010

      3 Disease Control Division, Korea Research Society, "Hospital patient survey sampling and weighting correction calculation study" 2007

      4 Barnes, Sean, "Handbook of Healthcare Operations Management" Springer New York 45-74, 2013

      5 Ian H. Witten, "Data Mining Practical Machine Learning Tools and Techniques" Morgan Kaufmann Publishers 2011

      6 Ltifi, Hela, "A human-centred design approach for developing dynamic decision support system based on knowledge discovery in databases" 22 (22): 69-96, 2013

      1 Disease Control Division, Korea Research Society, "the study of specimens correction and weight calculation of discharge patient survey" 2007

      2 Jun-ho Lim, "medical data mining using association rules" School of Computer & Information Technology Korea University 2010

      3 Disease Control Division, Korea Research Society, "Hospital patient survey sampling and weighting correction calculation study" 2007

      4 Barnes, Sean, "Handbook of Healthcare Operations Management" Springer New York 45-74, 2013

      5 Ian H. Witten, "Data Mining Practical Machine Learning Tools and Techniques" Morgan Kaufmann Publishers 2011

      6 Ltifi, Hela, "A human-centred design approach for developing dynamic decision support system based on knowledge discovery in databases" 22 (22): 69-96, 2013

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-01-01 평가 등재후보학술지 유지 (계속평가) KCI등재후보
      2015-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2013-12-26 학회명변경 영문명 : The Institute of Webcasting, Internet and Telecommunication -> The Institute of Internet, Broadcasting and Communication
      2010-06-21 학회명변경 한글명 : 한국인터넷방송통신TV학회 -> 한국인터넷방송통신학회
      영문명 : Institute Of Webcasting, Internet Television And Telecommunication -> The Institute of Webcasting, Internet and Telecommunication
      2005-08-25 학회명변경 한글명 : 한국인터넷방송/TV학회 -> 한국인터넷방송통신TV학회
      영문명 : Institute Of Webcasting, Internet Television And Telecommunication -> Institute Of Webcasting, Internet Television And Telecommunication
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0 0 0
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼