RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      석탄 가스화 복합 발전 플랜트의 분류층 가스화기 제어를 위한 선형 모델 예측 제어 기법 = Linear Model Predictive Control of an Entrained-flow Gasifier for an IGCC Power Plant

      한글로보기

      https://www.riss.kr/link?id=A100120757

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In the Integrated Gasification Combined Cycle (IGCC), the stability of the gasifier has strong influences onthe rest of the plant as it supplies the feed to the rest of the power generation system. In order to ensure a safe and stableoperation of the entrained-flow gasifier and for protection of the gasifier wall from the high internal temperature, thesolid slag layer thickness should be regulated tightly but its control is hampered by the lack of on-line measurement forit. In this study, a previously published dynamic simulation model of a Shell-type gasifier is reproduced and two differentlinear model predictive control strategies are simulated and compared for multivariable control of the entrained-flowgasifier. The first approach is to control a measured secondary variable as a surrogate to the unmeasured slag thickness. The control results of this approach depended strongly on the unmeasured disturbance type. In other words, the slagthickness could not be controlled tightly for a certain type of unmeasured disturbance. The second approach is to estimatethe unmeasured slag thickness through the Kalman filter and to use the estimate to predict and control the slagthickness directly. Using the second approach, the slag thickness could be controlled well regardless of the type ofunmeasured disturbances.
      번역하기

      In the Integrated Gasification Combined Cycle (IGCC), the stability of the gasifier has strong influences onthe rest of the plant as it supplies the feed to the rest of the power generation system. In order to ensure a safe and stableoperation of the ...

      In the Integrated Gasification Combined Cycle (IGCC), the stability of the gasifier has strong influences onthe rest of the plant as it supplies the feed to the rest of the power generation system. In order to ensure a safe and stableoperation of the entrained-flow gasifier and for protection of the gasifier wall from the high internal temperature, thesolid slag layer thickness should be regulated tightly but its control is hampered by the lack of on-line measurement forit. In this study, a previously published dynamic simulation model of a Shell-type gasifier is reproduced and two differentlinear model predictive control strategies are simulated and compared for multivariable control of the entrained-flowgasifier. The first approach is to control a measured secondary variable as a surrogate to the unmeasured slag thickness. The control results of this approach depended strongly on the unmeasured disturbance type. In other words, the slagthickness could not be controlled tightly for a certain type of unmeasured disturbance. The second approach is to estimatethe unmeasured slag thickness through the Kalman filter and to use the estimate to predict and control the slagthickness directly. Using the second approach, the slag thickness could be controlled well regardless of the type ofunmeasured disturbances.

      더보기

      참고문헌 (Reference)

      1 박영철, "상용모사기를 이용한 로토석탄의 분할유동층 가스화기 가스화 특성 모사" 한국화학공학회 50 (50): 511-515, 2012

      2 라호원, "분류층 습식 석탄가스화 기술" 한국화학공학회 48 (48): 129-139, 2010

      3 여정윤, "무인자동차의 모델 예측제어를 위한 장애물 파라미터 모델링 기법" 제어·로봇·시스템학회 18 (18): 1132-1138, 2012

      4 Mills, K., "The measurement and Estimation of the Physical Properties of Slag Formed During Coal Gasification: 2. Properties Relevant to Heat Transfer" 68 (68): 904-910, 1989

      5 Dixon, R., "The ALSTOM Benchmark Challenge on Gasifier Control" 214 (214): 389-394, 2000

      6 "The 6th basic plan on electricity demand" Ministry of knowledge economy of Korea government 2013

      7 Massoudi, M., "Slag Behavior in Gasifiers.PartII: Constitutive Modeling of Slag" 6 (6): 807-838, 2013

      8 Robinson, P. J., "Simple Dynamic Gasifier Model That Runs in Aspen Dynamics" 47 (47): 7784-7792, 2008

      9 Seyab, A., "Predictive Control for the ALSTOM Gasifier Problem" 153 (153): 293-301, 2006

      10 Mills, K., "Physical Properties of BOS Slags" 32 (32): 1-120, 1987

      1 박영철, "상용모사기를 이용한 로토석탄의 분할유동층 가스화기 가스화 특성 모사" 한국화학공학회 50 (50): 511-515, 2012

      2 라호원, "분류층 습식 석탄가스화 기술" 한국화학공학회 48 (48): 129-139, 2010

      3 여정윤, "무인자동차의 모델 예측제어를 위한 장애물 파라미터 모델링 기법" 제어·로봇·시스템학회 18 (18): 1132-1138, 2012

      4 Mills, K., "The measurement and Estimation of the Physical Properties of Slag Formed During Coal Gasification: 2. Properties Relevant to Heat Transfer" 68 (68): 904-910, 1989

      5 Dixon, R., "The ALSTOM Benchmark Challenge on Gasifier Control" 214 (214): 389-394, 2000

      6 "The 6th basic plan on electricity demand" Ministry of knowledge economy of Korea government 2013

      7 Massoudi, M., "Slag Behavior in Gasifiers.PartII: Constitutive Modeling of Slag" 6 (6): 807-838, 2013

      8 Robinson, P. J., "Simple Dynamic Gasifier Model That Runs in Aspen Dynamics" 47 (47): 7784-7792, 2008

      9 Seyab, A., "Predictive Control for the ALSTOM Gasifier Problem" 153 (153): 293-301, 2006

      10 Mills, K., "Physical Properties of BOS Slags" 32 (32): 1-120, 1987

      11 Valero A., "Oxy-co-gasification of Coal and Biomass in an Integrated Gasification Combined Cycle (IGCC) Power Plant" 31 (31): 1643-1655, 2006

      12 Watanabe, H., "Numerical Simulation of Coal Gasification in Entrained Flow Coal Gasifier" 85 (85): 1935-1943, 2006

      13 Seyab, A., "Nonlinear Model Predictive Control for the ALSTOM Gasifier" 16 (16): 795-808, 2006

      14 Gnielinski, V., "New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow" 16 (16): 359-368, 1976

      15 Seggiani, M., "Modelling and Simulation of Time Varying Slag Flow in a Prenflo Entrained-flow Gasifier" 77 (77): 1611-1621, 1998

      16 Govind, R., "Modeling and Simulation of An Entrained Flow Coal Gasifier" 30 (30): 79-92, 1984

      17 이재형, "Model Predictive Control: Review of the Three Decades of Development" 제어·로봇·시스템학회 9 (9): 415-424, 2011

      18 Bemporad, A., "Model Predictive Control Toolbox User’s Guide" The MathWorks Inc 2012

      19 Schobert, H., "Flow Properties of Low-rank Coal Ash Slags: Implications for Slagging Gasification" 64 (64): 1611-1617, 1985

      20 Wen, C. Y., "Entrained Coal Gasifier Modeling" 18 (18): 684-695, 1979

      21 Joongwon Lee, "Effects of burner type on a bench-scale entrained flow gasifier and conceptual modeling of the system with Aspen Plus" 한국화학공학회 29 (29): 574-582, 2012

      22 Sun, B., "Dynamic Modeling and Simulation of Shell Gasifier in IGCC" 92 (92): 1418-1425, 2011

      23 Muske, K., "Disturbance Modeling for Offsetfree Linear Model Predictive Control" 12 (12): 617-632, 2002

      24 Rao, A., "Combined cycle systems for near-zero emission power generation" Woodhead Publishing 2012

      25 Phillips, J., "CoalFleet RD&D Augmentation Plan for Integrated Gasification Combined Cycle(IGCC) Power Plants" EPRI 2006

      26 Dixon, R., "Benchmark Challenge at Control 2004" 10 (10): 21-23, 2005

      27 Montagnaro, F., "Analysis of Char-slag Interaction and Near-wall Particle Segregation in Entrained-flow Gasification of Coal" 157 (157): 874-883, 2010

      28 Mongahan, R., "A dynamic Reduced Order Model for Simulating Entrained Flow Gasifiers PartI: Model Development and Description" 91 (91): 61-80, 2012

      29 Bittanti, S., "A Clean-coal Control Technology Application Study: Modelling and Control Issues for a Coal Gasifier" 2009

      30 Paek, M., "300MW IGCC Gasification Plant Engineering and Technology Development Status" 2011

      31 "2010 Worldwide gasification database"

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-12-02 학술지명변경 한글명 : 화학공학 -> Korean Chemical Engineering Research(HWAHAK KONGHAK) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-08-25 학술지명변경 외국어명 : Korean Chem. Eng. Res. -> Korean Chemical Engineering Research KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-09-27 학회명변경 영문명 : The Korean Institute Of Chemical Engineers -> The Korean Institute of Chemical Engineers KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.43 0.43 0.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.35 0.496 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼