RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Effect of Cr Addition on Properties and Tribological Behavior at Elevated Temperature of Boride Layers Grown on Borosintered Powder Metallurgy Alloys

      한글로보기

      https://www.riss.kr/link?id=A108496907

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      This study focused on chromium addition (0 wt%, 3 wt%, 6 wt%, 9 wt% and 12 wt%) on the boride layer formation, microhardness,fracture toughness and elevated temperature friction and wear behaviour of alloys formed by powder metallurgy(P/M). The boride layers obtained on P/M alloys were characterized by examining density, porosity, surface roughness,scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, surface profilometry, microhardness,and fracture toughness. The addition of Cr has a significant effect on both boride layer formation and friction-wearbehaviour of P/M alloys. Increasing the Cr addition up to 6 wt% has an improving effect on the microhardness, fracturetoughness and wear resistance of the P/M alloys, whereas in the case of 9–12 wt% Cr addition causes exfoliation in the boridelayer and low fracture toughness, thus reducing wear resistance. Coefficients of friction and wear volume losses at elevatedtemperatures are higher than room temperature. The best wear resistance at room temperature was obtained in the samplecontaining 3 wt% Cr with the highest fracture toughness, while the best wear resistance at 250 °C and 500 °C was obtainedin the sample containing 6 wt% Cr, where the highest hardness value was obtained.
      번역하기

      This study focused on chromium addition (0 wt%, 3 wt%, 6 wt%, 9 wt% and 12 wt%) on the boride layer formation, microhardness,fracture toughness and elevated temperature friction and wear behaviour of alloys formed by powder metallurgy(P/M). The boride...

      This study focused on chromium addition (0 wt%, 3 wt%, 6 wt%, 9 wt% and 12 wt%) on the boride layer formation, microhardness,fracture toughness and elevated temperature friction and wear behaviour of alloys formed by powder metallurgy(P/M). The boride layers obtained on P/M alloys were characterized by examining density, porosity, surface roughness,scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, surface profilometry, microhardness,and fracture toughness. The addition of Cr has a significant effect on both boride layer formation and friction-wearbehaviour of P/M alloys. Increasing the Cr addition up to 6 wt% has an improving effect on the microhardness, fracturetoughness and wear resistance of the P/M alloys, whereas in the case of 9–12 wt% Cr addition causes exfoliation in the boridelayer and low fracture toughness, thus reducing wear resistance. Coefficients of friction and wear volume losses at elevatedtemperatures are higher than room temperature. The best wear resistance at room temperature was obtained in the samplecontaining 3 wt% Cr with the highest fracture toughness, while the best wear resistance at 250 °C and 500 °C was obtainedin the sample containing 6 wt% Cr, where the highest hardness value was obtained.

      더보기

      참고문헌 (Reference)

      1 R. Duggirala, 1 : 495-, 1992

      2 B.P. Sharma, Springer 303-308, 2018

      3 Y. Alshammari, 95 : 232-, 2019

      4 K. Kallip, 714 : 133-, 2017

      5 K. Zarebski, 26 : 401-, 2015

      6 S. Dong, 755 : 251-, 2018

      7 A. Romero, 280 : 116616-, 2020

      8 P. Christodoulou, 301 : 103-, 2001

      9 M. -W. Wu, 46 : 5285-, 2015

      10 Z. Q. Tan, 28 : 889-, 2021

      1 R. Duggirala, 1 : 495-, 1992

      2 B.P. Sharma, Springer 303-308, 2018

      3 Y. Alshammari, 95 : 232-, 2019

      4 K. Kallip, 714 : 133-, 2017

      5 K. Zarebski, 26 : 401-, 2015

      6 S. Dong, 755 : 251-, 2018

      7 A. Romero, 280 : 116616-, 2020

      8 P. Christodoulou, 301 : 103-, 2001

      9 M. -W. Wu, 46 : 5285-, 2015

      10 Z. Q. Tan, 28 : 889-, 2021

      11 D. Shanmugasundaram, 30 : 3444-, 2009

      12 S. Hatami, 210 : 1180-, 2010

      13 E. Hryha, 212 : 977-, 2012

      14 H. Danninger, 48 : 23-, 2005

      15 D. Chasoglou, 138 : 405-, 2013

      16 S. Turgut, 29 : 6997-, 2020

      17 V. Koç, 6 : 1265c3-, 2019

      18 A. Erdogan, 386 : 125482-, 2020

      19 B. Demir, TOBB University of Economics and Technology 593-603, 2008

      20 X. Dong, 41 : 199-, 2009

      21 E. Franco, 384 : 125306-, 2020

      22 E. R. Thompson, 12 : 213-, 1982

      23 A. Knaislová, 810 : 151895-, 2019

      24 P. Goeuriot, 55 : 9-, 1982

      25 M. Carbucicchio, 6 : 1147-, 1987

      26 A. K. Litoria, 100 : 353-, 2020

      27 J. Baczewska-Karwan, 60 : 41-, 2015

      28 P. Lindskog, 56 : 351-, 2013

      29 N. Makuch, 42 : 3275-, 2016

      30 M. Kulka, 325 : 515-, 2017

      31 A. Piasecki, 426-427 : 919-, 2019

      32 A. Günen, 402 : 126402-, 2020

      33 A. Günen, 51 : 927-, 2020

      34 İ Türkmen, 744 : 658-, 2018

      35 M. Keddam, 257 : 2004-, 2011

      36 C. Badini, 30 : 157-, 1987

      37 G. Palombarini, 12 : 741-, 1993

      38 W. Muhammad, 30 : 670-, 1999

      39 S. Cengiz, 30 : 339-, 2015

      40 J. Zhang, 8 : 6308-, 2019

      41 S. Ma, 527 : 6800-, 2010

      42 D. Shanmugasundaram, 41 : 8-, 2009

      43 M. V. Sundaram, 49 : 255-, 2018

      44 Z. Huang, 31 : 3084-, 2010

      45 G. Vaitkunaite, 151 : 106531-, 2020

      46 J. M. S. de Sousa, 143 : 106002-, 2020

      47 E. Franco, 48 : 324-, 2015

      48 S. Aissat, 117 : 608-, 2020

      49 P. Pereira, 482-483 : 203924-, 2021

      50 J. Venema, 406-407 : 149-, 2018

      51 A. Günen, 348 : 130-, 2018

      52 B. Guo, 255 : 426-, 2018

      53 O. A. Zambrano, 30 : 7101-, 2021

      54 A. R. Chintha, 428 : 430-, 2019

      55 Q. Y. Zhang, 61 : 214-, 2013

      56 M. X. Wei, 42 : 1-, 2011

      57 S. Q. Wang, 43 : 577-, 2010

      58 T. Das, 403 : 126383-, 2020

      59 I. Karasuno, "Some properties of oil atomized low alloy steel powders containing chromium, in Horizons of Powder Metallurgy: Part I" Verlag Schmid 53-56, 1986

      60 M. Ichidate, "Sintering of oil atomized low alloy steel powder, in Horizons of Powder Metallurgy: Part I" Verlag Schmid 57-60, 1986

      61 G. Bagliuk, "Sintering - Methods and Products" IntechOpen 249-266, 2012

      62 R. M. German, "Powder Metallurgy of Iron and Steel" Wiley 496-, 1998

      63 Ali Günen ; Mourad Keddam ; Azmi Erdoğan ; Mustafa Serdar Karakaş, "Pack-Boriding of Monel 400: Microstructural Characterization and Boriding Kinetics" 대한금속·재료학회 28 (28): 1851-1863, 2022

      64 Seungjin Nam ; Se Eun Shin ; Jae‑Hun Kim ; Hyunjoo Choi, "Effect of Powder Morphology and Chemical Distribution on Properties of Multicomponent Alloys Produced Via Powder Metallurgy" 대한금속·재료학회 26 (26): 1385-1393, 2020

      65 Jorge Chávez ; Omar Jiménez Alemán ; Martín Flores Martínez ; Héctor J. Vergara‑Hernández ; Luis Olmos ; Pedro Garnica‑González ; Didier Bouvard, "Characterization of Ti6Al4V–Ti6Al4V/30Ta Bilayer Components Processed by Powder Metallurgy for Biomedical Applications" 대한금속·재료학회 26 (26): 205-220, 2020

      66 P. Ramakrishnan, "Advances in Powder Metallurgy: Properties, Processing and Applications" Woodhead Publishing 493-519, 2013

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼