RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      잡음 모델을 이용한 파티클 필터 측위 = Particle Filter Localization Using Noisy Models

      한글로보기

      https://www.riss.kr/link?id=A101434268

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      지능형 에이전트에게 요구되는 가장 기초적인 기능 중의 하나가 불확실한 센서 데이터에 의존하여 자신의 현재 위치가 어디인지를 파악하는 일이다. 본 논문에서는 가장 효과적인 확률 기반의 측위 기법인 파티클 필터를 실제 로봇 측위에 적용한 로봇 측위 시스템의 구현에 대해 설명하고, 성능 평가를 위한 실험의 결과를 소개한다. 특히 비-잡음 상태 전이 모델과 로봇 동작의 오차를 고려한 잡음 모델간의 비교 실험을 통해, 실제 로봇 동작의 불확실성에 근사한 상태 전이 모델이 파티클 필터 측위의 성능 개선에 도움이 될 수 있음을 보인다.
      번역하기

      지능형 에이전트에게 요구되는 가장 기초적인 기능 중의 하나가 불확실한 센서 데이터에 의존하여 자신의 현재 위치가 어디인지를 파악하는 일이다. 본 논문에서는 가장 효과적인 확률 기...

      지능형 에이전트에게 요구되는 가장 기초적인 기능 중의 하나가 불확실한 센서 데이터에 의존하여 자신의 현재 위치가 어디인지를 파악하는 일이다. 본 논문에서는 가장 효과적인 확률 기반의 측위 기법인 파티클 필터를 실제 로봇 측위에 적용한 로봇 측위 시스템의 구현에 대해 설명하고, 성능 평가를 위한 실험의 결과를 소개한다. 특히 비-잡음 상태 전이 모델과 로봇 동작의 오차를 고려한 잡음 모델간의 비교 실험을 통해, 실제 로봇 동작의 불확실성에 근사한 상태 전이 모델이 파티클 필터 측위의 성능 개선에 도움이 될 수 있음을 보인다.

      더보기

      다국어 초록 (Multilingual Abstract)

      One of the most fundamental functions required for an intelligent agent is to estimate its current position based upon uncertain sensor data. In this paper, we explain the implementation of a robot localization system using Particle filters, which are the most effective one of the probabilistic localization methods, and then present the result of experiments for evaluating the performance of our system. Through conducting experiments to compare the effect of the noise-free model with that of the noisy state transition model considering inherent errors of robot actions, we show that it can help improve the performance of the Particle filter localization to apply a state transition model closely approximating the uncertainty of real robot actions.
      번역하기

      One of the most fundamental functions required for an intelligent agent is to estimate its current position based upon uncertain sensor data. In this paper, we explain the implementation of a robot localization system using Particle filters, which are...

      One of the most fundamental functions required for an intelligent agent is to estimate its current position based upon uncertain sensor data. In this paper, we explain the implementation of a robot localization system using Particle filters, which are the most effective one of the probabilistic localization methods, and then present the result of experiments for evaluating the performance of our system. Through conducting experiments to compare the effect of the noise-free model with that of the noisy state transition model considering inherent errors of robot actions, we show that it can help improve the performance of the Particle filter localization to apply a state transition model closely approximating the uncertainty of real robot actions.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼