In accordance with low carbon and green growth paradigm, a subway is one of major public transit systems for resolving traffic congestion and decreasing traffic accidents. In addition, as subway networks expand, passengers' travel pattern in the subwa...
In accordance with low carbon and green growth paradigm, a subway is one of major public transit systems for resolving traffic congestion and decreasing traffic accidents. In addition, as subway networks expand, passengers' travel pattern in the subway network change and consequently affect the urban structure. Generally, new subway route has been planned and developed, mainly considering a travel demand forecast. However, it is desired to conduct an empirical analysis on the forecast model regarding change of travel accessibility and passenger demand pattern according to new subway line. Therefore, in this paper, an alternative method, developed based upon a spatial syntax model, is proposed for evaluating new subway route in terms of passenger's mobility and network accessibility. In a case study, we constructed subway network data, mainly targeting the no 9 subway line opened in 2009. With an axial-map analysis, we calculated spatial characteristics to describe topological movement interface. We then analyzed actual modal shift and change on demand of passengers through the number of subway passenger between subway stations and the number of passenger according to comparative bus line from Smart Card to validate suggested methods. Results show that the proposed method provides quantitative means of visualizing passenger flow in subway route planning and of analyzing the time-space characteristics of network. Also, it is expected that the proposed method can be utilized for predicting a passengers' pattern and its impact on public transportation.