Transient signals in underwater show several characterisrics, that is, short duration, strong nonstationarity, various types of transient sources, which make it difficult to analyze and classify transient signals. In this paper, the feature vector ext...
Transient signals in underwater show several characterisrics, that is, short duration, strong nonstationarity, various types of transient sources, which make it difficult to analyze and classify transient signals. In this paper, the feature vector extraction method for transient SOMAR signals is discussed by applying digital signal processing methods to the analysis of transient signals. A feature vector extraction methods using wavelet transform, which enable us to obtain better recognition rate than automatic classification using the classical method, are proposed. It is confirmed by simulation that the proposed method using wavelet transform performs better than the classical method even with smaller number of feature vectors. Especially, the feature vector extraction method using PR-QMF wavelet transform with the Daubechies coefficients is shown to perform well in noisy environment with easy implementation.