RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Characterization of non-metallic inclusions and their influence on the mechanical properties of a FCC single-phase high-entropy alloy

      한글로보기

      https://www.riss.kr/link?id=A107700927

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>The characteristics of non-metallic inclusions (NMI) that precipitated in an equiatomic CoCrFeMnNi high-entropy alloy (HEA) were investigated in order to understand their effect on the mechanica...

      <P><B>Abstract</B></P> <P>The characteristics of non-metallic inclusions (NMI) that precipitated in an equiatomic CoCrFeMnNi high-entropy alloy (HEA) were investigated in order to understand their effect on the mechanical properties of the HEA. As the existence of NMI could degrade the mechanical properties, improved information concerning NMI could hold key importance in controlling the promising applications of HEA. An equiatomic HEA composed of CoCrFeMnNi was manufactured using vacuum induction melting (VIM) method. A thermodynamic computation program (FactSage™7.0) was used to investigate the solidification process of the HEA at both equilibrium and non-equilibrium states. Furthermore, the computational program also predicted the type of inclusions that would precipitate. Through an electrolytic extraction process and scanning electron microscopy - energy dispersive spectroscopy (SEM-EDS) observations, the actual compositions of the precipitated inclusions were observed and classified as (a) Mn-Cr-Al oxide, (b) Mn(S,Se), and (c) mixed type; a Mn-Cr-Al oxide core with a Mn(S,Se) shell. Mn-Cr-Al oxide, in a brittle spinel-structured phase with high melting temperature, was also observed in dimples on the fracture surface. The relationship between the tensile properties of HEA and the characteristics of NMI were discussed by comparing two CoCrFeMnNi specimens with the same structure and composition. Overall, the present results indicate that the tensile properties of the HEA were significantly degraded as the area fraction (AF) and number density (ND) of NMI increased.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Qualitative and quantitative characterization of non-metallic particles in HEA was performed. </LI> <LI> Effect of impurity on non-metallic particle in HEA was thermodynamically simulated. </LI> <LI> Fracture mechanics of HEA with crack initiation under load condition was revealed. </LI> <LI> Importance of manufacturing (impurity, casting) conditions of HEA was highlighted. </LI> <LI> Necessity of refining non-metallic particles in HEA was highlighted. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼