RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Research on Fitness Function of Two Evolution Algorithms Used for Neutron Spectrum Unfolding

      한글로보기

      https://www.riss.kr/link?id=A107267166

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      When evolution algorithms are used to unfold the neutron energy spectrum, fitness function design is an important fundamental work for evaluating the quality of the solution, but it has not attracted much attention. In this work, we investigated the performance of eight fitness functions attached to the genetic algorithm (GA) and the differential evolution algorithm (DEA) used for unfolding four neutron spectra selected from the IAEA 403 report. Experiments show that the fitness functions with a maximum in the GA can limit the ability of the population to percept the fitness change, but the ability can be made up in the DEA. The fitness function with a feature penalty term helps to improve the performance of solutions, and the fitness function using the standard deviation and the Chi-squared result shows the balance between the algorithm and the spectra. The results also show that the DEA has good potential for neutron energy spectrum unfolding. The purposes of this work are to provide evidence for structuring and modifying the fitness functions and to suggest some genetic operations that should receive attention when using the fitness function to unfold neutron spectra.
      번역하기

      When evolution algorithms are used to unfold the neutron energy spectrum, fitness function design is an important fundamental work for evaluating the quality of the solution, but it has not attracted much attention. In this work, we investigated the p...

      When evolution algorithms are used to unfold the neutron energy spectrum, fitness function design is an important fundamental work for evaluating the quality of the solution, but it has not attracted much attention. In this work, we investigated the performance of eight fitness functions attached to the genetic algorithm (GA) and the differential evolution algorithm (DEA) used for unfolding four neutron spectra selected from the IAEA 403 report. Experiments show that the fitness functions with a maximum in the GA can limit the ability of the population to percept the fitness change, but the ability can be made up in the DEA. The fitness function with a feature penalty term helps to improve the performance of solutions, and the fitness function using the standard deviation and the Chi-squared result shows the balance between the algorithm and the spectra. The results also show that the DEA has good potential for neutron energy spectrum unfolding. The purposes of this work are to provide evidence for structuring and modifying the fitness functions and to suggest some genetic operations that should receive attention when using the fitness function to unfold neutron spectra.

      더보기

      참고문헌 (Reference)

      1 R. L. Bramblett, 9 : 1-, 1960

      2 H. Shahabinejad, 811 : 82-, 2016

      3 D. Wang, 44 : 1270-, 2010

      4 D. W. Freeman, 425 : 549-, 1999

      5 D. Zhao, 933 : 56-, 2019

      6 R. Storn, 11 : 341-, 1997

      7 H. Shahabinejad, 136 : 9-, 2017

      8 J.A. Santos, 71 : 81-, 2012

      9 J. Wang, 147 : 136-, 2019

      10 S.M.T. Hoang, 318 : 631-, 2018

      1 R. L. Bramblett, 9 : 1-, 1960

      2 H. Shahabinejad, 811 : 82-, 2016

      3 D. Wang, 44 : 1270-, 2010

      4 D. W. Freeman, 425 : 549-, 1999

      5 D. Zhao, 933 : 56-, 2019

      6 R. Storn, 11 : 341-, 1997

      7 H. Shahabinejad, 136 : 9-, 2017

      8 J.A. Santos, 71 : 81-, 2012

      9 J. Wang, 147 : 136-, 2019

      10 S.M.T. Hoang, 318 : 631-, 2018

      11 X. Wang, 25 : 1-, 2014

      12 D. E. Goldberg, "genetic algorithms in search, optimization, and machine learning" Addison-Wesley Publishing Company 11-15, 1989

      13 Kang Chang, "Research on the Artificial Neural Network Unfolding Method for the Water-Pumping-Injection Multi-Homocentric Sphere Neutron Spectrometer" 한국물리학회 74 (74): 542-546, 2019

      14 J. B. Yang, "Patent No. ZL201610264803.7"

      15 J. B. Yang, "Patent No. US10656292B2"

      16 S. Kazarlis, "Parallel Problem Solving from NaturePPSN V" Springer 211-220, 2006

      17 A. E. Eiben, "Introduction to evolutionary computing" Springer-Verlag 4-66, 2015

      18 IInternational Atomic Energy Agency, "Compendium of neutron spectra and detector responses for radiation protection purposes:supplement to technical reports series, No. 403"

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 SCI 등재 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.47 0.15 0.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.2 0.26 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼