RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      색상-공간 특징을 사용한 내용기반 칼라 이미지 검색 시스템의 설계 및 구현 = Design and Implementation of a Content-based Color Image Retrieval System based on Color-Spatial Feature

      한글로보기

      https://www.riss.kr/link?id=A82300442

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 색상-공간 특징을 사용하여 24bpp RGB 칼라 이미지를 검색하는 방법을 제안한다. 각 이미지는 RGB 색상공간에서 인지적 균등 색상공간인 CIE L*u*v* 색상공간으로의 변환을 거친 후 색상 유사도를 사용하여 여러 개의 영역으로 나누어진다. 크기가 작은 영역은 무시할 수 있으며, 큰 영역은 공간 특징으 추출하기 어려우므로, 영역 분할 수 영역의 크기에 제약을 가하였다. 분할 된 각 영역의 평균 색상과 중점을 색상-공간 특징으로 추출하게 된다. 검색 과정에서는 질의의 색상-공간 특징과 데이타베이스 이미지의 색상-공간 유사도를 검사하여 검색하게 된다. 사용자 그래픽 질의와 예제 이미지에 의한 검색이 가능한 내용기반 이미지 검색 시스템을 구현하였다. 실험한 결과 Recall/Precision이 0.80/0.84였다.
      번역하기

      본 논문에서는 색상-공간 특징을 사용하여 24bpp RGB 칼라 이미지를 검색하는 방법을 제안한다. 각 이미지는 RGB 색상공간에서 인지적 균등 색상공간인 CIE L*u*v* 색상공간으로의 변환을 거친 후 ...

      본 논문에서는 색상-공간 특징을 사용하여 24bpp RGB 칼라 이미지를 검색하는 방법을 제안한다. 각 이미지는 RGB 색상공간에서 인지적 균등 색상공간인 CIE L*u*v* 색상공간으로의 변환을 거친 후 색상 유사도를 사용하여 여러 개의 영역으로 나누어진다. 크기가 작은 영역은 무시할 수 있으며, 큰 영역은 공간 특징으 추출하기 어려우므로, 영역 분할 수 영역의 크기에 제약을 가하였다. 분할 된 각 영역의 평균 색상과 중점을 색상-공간 특징으로 추출하게 된다. 검색 과정에서는 질의의 색상-공간 특징과 데이타베이스 이미지의 색상-공간 유사도를 검사하여 검색하게 된다. 사용자 그래픽 질의와 예제 이미지에 의한 검색이 가능한 내용기반 이미지 검색 시스템을 구현하였다. 실험한 결과 Recall/Precision이 0.80/0.84였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      In this paper, we presents a method of retrieving 24 bpp RGB images based on color-spatial features. For each image, it is subdivided into regions by using similarity of color after converting HGB color space to cm L*u*v* color space that is perceptually uniform. Our segmentation algorithm constrains the size of region because a small region is discardable and a large region is difficult to extract spatial feature. For each region, averaging color and center of region are extracted to construct color-spatial features. During the image retrieval process, the color and spatial features of query are compared with those of the database images using our similarity measure to determine the set of candidate images to be retrieved. We implement a content-based color image retrieval system using the proposed method. The system is able to retrieve images by user graphic or example image query. Experimental results show that Recall/Precision is 0.80/0.84.
      번역하기

      In this paper, we presents a method of retrieving 24 bpp RGB images based on color-spatial features. For each image, it is subdivided into regions by using similarity of color after converting HGB color space to cm L*u*v* color space that is perceptua...

      In this paper, we presents a method of retrieving 24 bpp RGB images based on color-spatial features. For each image, it is subdivided into regions by using similarity of color after converting HGB color space to cm L*u*v* color space that is perceptually uniform. Our segmentation algorithm constrains the size of region because a small region is discardable and a large region is difficult to extract spatial feature. For each region, averaging color and center of region are extracted to construct color-spatial features. During the image retrieval process, the color and spatial features of query are compared with those of the database images using our similarity measure to determine the set of candidate images to be retrieved. We implement a content-based color image retrieval system using the proposed method. The system is able to retrieve images by user graphic or example image query. Experimental results show that Recall/Precision is 0.80/0.84.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 이미지의 색상, 공간 특징 추출
      • 3. 이미지 검색
      • 요약
      • Abstract
      • 1. 서론
      • 2. 이미지의 색상, 공간 특징 추출
      • 3. 이미지 검색
      • 4. 실험 및 고찰
      • 5. 결론
      • 참고문헌
      • 저자소개
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼