RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Detection of microbial organisms on Apis mellifera L. beehives in palm garden, Eastern Thailand

      한글로보기

      https://www.riss.kr/link?id=A108937614

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Background: Honey bees play a crucial role in pollination and ecological balance. Apis mellifera L. colonies, especially those located in specific geographic regions, such as the palm garden in Eastern Thailand, are susceptible to potential threats from microbial contaminants. Understanding and detecting microbial organisms in these beehives is essential for the preservation of bee health, honey production, and the broader ecosystem. However, the problem of microbial infection and antibiotic-resistant bacteria is more severe and continuously increasing, resulting in a health, economic, and social crisis. The purpose of this study is to determine the prevalence of microorganisms in A. mellifera beehives in palm gardens in Rayong province, Eastern Thailand.




      Results: Ten swabs in transport media were swabbed and obtained from different parts of each beehive (1 swab per beehive), for a total of 10 hives. Traditional microbial culture- based methods, biochemical tests, and antimicrobial susceptibility (disc-diffusion) tests were used to detect microbial organisms and antibiotic resistance in bacteria. The swab tests from nine beehives resulted in the detection of Gram-positive bacteria (63.64%), Gram-negative bacteria (27.27%), and fungi/yeast (9.09%). These microorganisms are classified as a group of coagulase-negative Staphylococcus spp. and made up 40.91% of the bacteria discovered. Other bacteria found were Coryneform bacteria (13.64%), Pantoea spp. (13.64%), Bacillus spp. (9.09%), yeast (9.09%), glucose non-fermentative Gram-negative bacilli (9.09%), and Pseudomonas spp. (4.55%). However, due to the traditional culture- based and 0biochemical tests usually used to identify the microbial organisms in clinical specimens and the limitation of identifying some environmental microbial species, the results of the antimicrobial susceptibility test cannot reveal if the organism is resistant or susceptible to the drug. Nevertheless, drug-sensitive inhibition zones were formed with each antibiotic agent.




      Conclusions: Overall, the study supports prevention, healthcare, and public health systems. The contamination of microorganisms in the beehives may affect the quality of honey and other bee products or even the health of the beekeeper. To avoid this kind of contamination, it is therefore necessary to wear personal protective equipment while harvesting honey and other bee products.
      번역하기

      Background: Honey bees play a crucial role in pollination and ecological balance. Apis mellifera L. colonies, especially those located in specific geographic regions, such as the palm garden in Eastern Thailand, are susceptible to potential threats fr...

      Background: Honey bees play a crucial role in pollination and ecological balance. Apis mellifera L. colonies, especially those located in specific geographic regions, such as the palm garden in Eastern Thailand, are susceptible to potential threats from microbial contaminants. Understanding and detecting microbial organisms in these beehives is essential for the preservation of bee health, honey production, and the broader ecosystem. However, the problem of microbial infection and antibiotic-resistant bacteria is more severe and continuously increasing, resulting in a health, economic, and social crisis. The purpose of this study is to determine the prevalence of microorganisms in A. mellifera beehives in palm gardens in Rayong province, Eastern Thailand.




      Results: Ten swabs in transport media were swabbed and obtained from different parts of each beehive (1 swab per beehive), for a total of 10 hives. Traditional microbial culture- based methods, biochemical tests, and antimicrobial susceptibility (disc-diffusion) tests were used to detect microbial organisms and antibiotic resistance in bacteria. The swab tests from nine beehives resulted in the detection of Gram-positive bacteria (63.64%), Gram-negative bacteria (27.27%), and fungi/yeast (9.09%). These microorganisms are classified as a group of coagulase-negative Staphylococcus spp. and made up 40.91% of the bacteria discovered. Other bacteria found were Coryneform bacteria (13.64%), Pantoea spp. (13.64%), Bacillus spp. (9.09%), yeast (9.09%), glucose non-fermentative Gram-negative bacilli (9.09%), and Pseudomonas spp. (4.55%). However, due to the traditional culture- based and 0biochemical tests usually used to identify the microbial organisms in clinical specimens and the limitation of identifying some environmental microbial species, the results of the antimicrobial susceptibility test cannot reveal if the organism is resistant or susceptible to the drug. Nevertheless, drug-sensitive inhibition zones were formed with each antibiotic agent.




      Conclusions: Overall, the study supports prevention, healthcare, and public health systems. The contamination of microorganisms in the beehives may affect the quality of honey and other bee products or even the health of the beekeeper. To avoid this kind of contamination, it is therefore necessary to wear personal protective equipment while harvesting honey and other bee products.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼