RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Platelets as a Source of Peripheral Aβ Production and Its Potential as a Blood-based Biomarker for Alzheimer’s Disease

      한글로보기

      https://www.riss.kr/link?id=A107198512

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      알츠하이머병은 점진적인 신경세포의 손상과 이로 인해 인지기능 장애를 유발하는 질병이다. 이 질환은 현재로서는 치료할 수 있는 질환이 아니고 진행을 멈추게 할 수 있는 방법이 없다. 그러나 초기에 알츠하이머병을 치료하는 것이 가장 효과적이므로 초기 진단은 증상을 관리할 수 있는 가장 좋은 기회를 제공할 수 있다. 알츠하이머병을 진단하기 위한 바이오마커로는 아밀로이드 베타(Aβ), 병적인 타우, 그리고 신경퇴화가 있고, Aβ의 축적, 인산화 타우는 뇌척수액이나 양전자 방출 단층촬영술을 통해 분석할 수 있다. 그러나 뇌척수액의 채취는 매우 침습적이고 양전자 방출 단층촬영술은 전문적인 고가의 장비가 필요하다. 지난 수십년 동안 빠르고 최소한의 침습성을 가진 바이오마커 분석법을 개발하기 위하여 혈액에 기반한 바이오마커 분석 기술이 연구되어 왔다. 그 중 주목할 만 한 발견이 혈장에서 Aβ의 주요 원천으로 혈소판과의 관련성이다. 아밀로이드 베타는 혈액-뇌 장벽을 통과할 수 있고 정상 상태에서는 뇌와 혈액 간 평형을 이루게 된다. 흥미롭게도, 여러 임상시험 결과 혈장에서 Aβ42/Aβ40 비율이 가벼운 인지장애 질환과 알츠하이머병에서 감소되어 있는 것을 증명하였다. 종합하면, 이러한 최근의 발견들은 침습성을 최소화한 알츠하이머병의 초기 진단 기술을 개발하는 데 이용될 수 있다. 본 총설에서, 저자들은 알츠하이머병의 바이오마커에 대한 최근 연구결과들, 특히 말초에서 Aβ를 생산하는 혈소판의 역할과 혈액 기반 바이오마커로서의 개발 가능성에 대해 고찰하였다.
      번역하기

      알츠하이머병은 점진적인 신경세포의 손상과 이로 인해 인지기능 장애를 유발하는 질병이다. 이 질환은 현재로서는 치료할 수 있는 질환이 아니고 진행을 멈추게 할 수 있는 방법이 없다. ...

      알츠하이머병은 점진적인 신경세포의 손상과 이로 인해 인지기능 장애를 유발하는 질병이다. 이 질환은 현재로서는 치료할 수 있는 질환이 아니고 진행을 멈추게 할 수 있는 방법이 없다. 그러나 초기에 알츠하이머병을 치료하는 것이 가장 효과적이므로 초기 진단은 증상을 관리할 수 있는 가장 좋은 기회를 제공할 수 있다. 알츠하이머병을 진단하기 위한 바이오마커로는 아밀로이드 베타(Aβ), 병적인 타우, 그리고 신경퇴화가 있고, Aβ의 축적, 인산화 타우는 뇌척수액이나 양전자 방출 단층촬영술을 통해 분석할 수 있다. 그러나 뇌척수액의 채취는 매우 침습적이고 양전자 방출 단층촬영술은 전문적인 고가의 장비가 필요하다. 지난 수십년 동안 빠르고 최소한의 침습성을 가진 바이오마커 분석법을 개발하기 위하여 혈액에 기반한 바이오마커 분석 기술이 연구되어 왔다. 그 중 주목할 만 한 발견이 혈장에서 Aβ의 주요 원천으로 혈소판과의 관련성이다. 아밀로이드 베타는 혈액-뇌 장벽을 통과할 수 있고 정상 상태에서는 뇌와 혈액 간 평형을 이루게 된다. 흥미롭게도, 여러 임상시험 결과 혈장에서 Aβ42/Aβ40 비율이 가벼운 인지장애 질환과 알츠하이머병에서 감소되어 있는 것을 증명하였다. 종합하면, 이러한 최근의 발견들은 침습성을 최소화한 알츠하이머병의 초기 진단 기술을 개발하는 데 이용될 수 있다. 본 총설에서, 저자들은 알츠하이머병의 바이오마커에 대한 최근 연구결과들, 특히 말초에서 Aβ를 생산하는 혈소판의 역할과 혈액 기반 바이오마커로서의 개발 가능성에 대해 고찰하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Alzheimer’s disease causes progressive neuronal loss that leads to cognitive disturbances. It is not currently curable, and there is no way to stop its progression. However, since medical treatment for Alzheimer’s disease is most effective in the early stages, early detection can provide the best chance for symptom management. Biomarkers for the diagnosis of Alzheimer’s disease include amyloid β (Aβ) deposition, pathologic tau, and neurodegeneration. Aβ deposition and phosphorylated tau can be detected by cerebrospinal fluid (CSF) analysis or positron emission tomography (PET). However, CSF sampling is quite invasive, and PET analysis needs specialized and expensive equipment. During the last decades, blood-based biomarker analysis has been studied to develop fast and minimally invasive biomarker analysis method. And one of the remarkable findings is the involvement of platelets as a primary source of Aβ in plasma. Aβ can be transported across the blood–brain barrier, creating an equilibrium of Aβ levels between the brain and blood under normal condition. Interestingly, a number of clinical studies have unequivocally demonstrated that plasma Aβ42/Aβ40 ratios are reduced in mild cognitive impairment and Alzheimer’s disease. Together, these recent findings may lead to the development of a fast and minimally invasive early diagnostic approach to Alzheimer’s disease. In this review, we summarize recent advances in the biomarkers of Alzheimer’s disease, especially the involvement of platelets as a source of peripheral Aβ production and its potential as a blood-based biomarker.
      번역하기

      Alzheimer’s disease causes progressive neuronal loss that leads to cognitive disturbances. It is not currently curable, and there is no way to stop its progression. However, since medical treatment for Alzheimer’s disease is most effective in the ...

      Alzheimer’s disease causes progressive neuronal loss that leads to cognitive disturbances. It is not currently curable, and there is no way to stop its progression. However, since medical treatment for Alzheimer’s disease is most effective in the early stages, early detection can provide the best chance for symptom management. Biomarkers for the diagnosis of Alzheimer’s disease include amyloid β (Aβ) deposition, pathologic tau, and neurodegeneration. Aβ deposition and phosphorylated tau can be detected by cerebrospinal fluid (CSF) analysis or positron emission tomography (PET). However, CSF sampling is quite invasive, and PET analysis needs specialized and expensive equipment. During the last decades, blood-based biomarker analysis has been studied to develop fast and minimally invasive biomarker analysis method. And one of the remarkable findings is the involvement of platelets as a primary source of Aβ in plasma. Aβ can be transported across the blood–brain barrier, creating an equilibrium of Aβ levels between the brain and blood under normal condition. Interestingly, a number of clinical studies have unequivocally demonstrated that plasma Aβ42/Aβ40 ratios are reduced in mild cognitive impairment and Alzheimer’s disease. Together, these recent findings may lead to the development of a fast and minimally invasive early diagnostic approach to Alzheimer’s disease. In this review, we summarize recent advances in the biomarkers of Alzheimer’s disease, especially the involvement of platelets as a source of peripheral Aβ production and its potential as a blood-based biomarker.

      더보기

      목차 (Table of Contents)

      • Introduction
      • Platelets
      • Platelet counts in aging and Alzheimer’s disease patients
      • Platelet indices in Alzheimer’s disease patients
      • APP processing in the platelet
      • Introduction
      • Platelets
      • Platelet counts in aging and Alzheimer’s disease patients
      • Platelet indices in Alzheimer’s disease patients
      • APP processing in the platelet
      • Platelets as a source of amyloidogenic amyloid β in the blood
      • Transport of peripheral amyloid β into the brain
      • Amyloid β as a peripheral biomarker of Alzheimer’s disease
      • Advantages and disadvantages of plasma Aβ42/Aβ40 as a biomarker of Alzheimer’s disease
      • Other sources of amyloid β and its roles in the peripheries
      • Suggestive outline from generation of Aβ in platelets to Alzheimer’s disease pathogenesis
      • Conclusion and future focuses
      • References
      • 초록
      더보기

      참고문헌 (Reference)

      1 Colciaghi, F., "α-Secretase ADAM10 as well as αAPPs is reduced in platelets and CSF of Alzheimer disease patients" 8 : 67-74, 2002

      2 Santimone, I., "White blood cell count, sex and age are major determinants of heterogeneity of platelet indices in an adult general population : results from the MOLI-SANI project" 96 : 1180-1188, 2011

      3 d'Uscio, L. V., "Vascular phenotype of amyloid precursor protein-deficient mice" 316 : H1297-, 2019

      4 Koç, E. R., "The increase of mean platelet volume in patients with Alzheimer disease" 44 : 1060-1066, 2014

      5 Stakos, D. A., "The Alzheimer's Disease Amyloid-beta hypothesis in cardiovascular aging and disease : JACC Focus Seminar" 75 : 952-967, 2020

      6 Okereke, O. I., "Ten-year change in plasma amyloid beta levels and late-life cognitive decline" 66 : 1247-1253, 2009

      7 Wang, H., "Targeted inhibition of RAGE reduces amyloid-β influx across the blood-brain barrier and improves cognitive deficits in db/db mice" 131 : 143-153, 2018

      8 Nguyen, K. V., "Special Issue : Alzheimer's disease" 5 : 74-80, 2018

      9 Abdullah, L., "Serum Abeta levels as predictors of conversion to mild cognitive impairment/Alzheimer disease in an ADAPT subcohort" 15 : 432-437, 2009

      10 Li, Q. X., "Secretion of Alzheimer's disease Abeta amyloid peptide by activated human platelets" 78 : 461-469, 1998

      1 Colciaghi, F., "α-Secretase ADAM10 as well as αAPPs is reduced in platelets and CSF of Alzheimer disease patients" 8 : 67-74, 2002

      2 Santimone, I., "White blood cell count, sex and age are major determinants of heterogeneity of platelet indices in an adult general population : results from the MOLI-SANI project" 96 : 1180-1188, 2011

      3 d'Uscio, L. V., "Vascular phenotype of amyloid precursor protein-deficient mice" 316 : H1297-, 2019

      4 Koç, E. R., "The increase of mean platelet volume in patients with Alzheimer disease" 44 : 1060-1066, 2014

      5 Stakos, D. A., "The Alzheimer's Disease Amyloid-beta hypothesis in cardiovascular aging and disease : JACC Focus Seminar" 75 : 952-967, 2020

      6 Okereke, O. I., "Ten-year change in plasma amyloid beta levels and late-life cognitive decline" 66 : 1247-1253, 2009

      7 Wang, H., "Targeted inhibition of RAGE reduces amyloid-β influx across the blood-brain barrier and improves cognitive deficits in db/db mice" 131 : 143-153, 2018

      8 Nguyen, K. V., "Special Issue : Alzheimer's disease" 5 : 74-80, 2018

      9 Abdullah, L., "Serum Abeta levels as predictors of conversion to mild cognitive impairment/Alzheimer disease in an ADAPT subcohort" 15 : 432-437, 2009

      10 Li, Q. X., "Secretion of Alzheimer's disease Abeta amyloid peptide by activated human platelets" 78 : 461-469, 1998

      11 Nayak, M. K., "Regulatory role of proteasome in determination of platelet life span" 288 : 6826-6834, 2013

      12 Kelley, M., "Reducing the risk of Alzheimer's disease and maintaining brain health in an aging society" 133 : 225-229, 2018

      13 Deane, R., "RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain" 9 : 907-913, 2003

      14 Evin, G., "Proteolytic processing of the Alzheimer's disease amyloid precursor protein in brain and platelets" 74 : 386-392, 2003

      15 Van Nostrand, W. E., "Protease nexin-II(amyloid beta-protein precursor) : a platelet alpha-granule protein" 248 : 745-748, 1990

      16 Bermejo-Bescós, P., "Processing of the platelet amyloid precursor protein in the mild cognitive impairment(MCI)" 38 : 1415-1423, 2013

      17 Dong, X., "Predictive value of routine peripheral blood biomarkers in Alzheimer's disease" 11 : 332-, 2019

      18 Chen, M., "Platelets are the primary source of amyloid beta-peptide in human blood" 213 : 96-103, 1995

      19 Evin, G., "Platelets and Alzheimer's disease : Potential of APP as a biomarker" 2 : 102-113, 2012

      20 McGuinness, B., "Platelet membrane β-secretase activity in mild cognitive impairment and conversion to dementia : a longitudinal study" 49 : 1095-1103, 2016

      21 Segal, J. B., "Platelet counts differ by sex, ethnicity, and age in the United States" 16 : 123-130, 2006

      22 Tang, K., "Platelet amyloid precursor protein processing : a bio-marker for Alzheimer’s disease" 240 : 53-58, 2006

      23 Sevush, S., "Platelet activation in Alzheimer disease" 55 : 530-536, 1998

      24 Koyama, A., "Plasma amyloid-β as a predictor of dementia and cognitive decline : a systematic review and meta-analysis" 69 : 824-831, 2012

      25 Chouraki, V., "Plasma amyloid-β and risk of Alzheimer's disease in the Framingham Heart Study" 11 : 249-257, 2015

      26 Fandos, N., "Plasma amyloid β 42/40 ratios as biomarkers for amyloid β cerebral deposition in cognitively normal individuals" 8 : 179-187, 2017

      27 Pérez-Grijalba, V., "Plasma Aβ42/40 ratio detects early stages of Alzheimer's disease and correlates with CSF and neuroimaging biomarkers in the AB255 study" 6 : 34-41, 2019

      28 DeMattos, R. B., "Plaque-associated disruption of CSF and plasma amyloid-beta(Abeta)equilibrium in a mouse model of Alzheimer's disease" 81 : 229-236, 2002

      29 Cheng, Y., "Peripheral clearance of brain-derived Aβ in Alzheimer's disease : pathophysiology and therapeutic perspectives" 9 : 16-, 2020

      30 Schupf, N., "Peripheral Abeta subspecies as risk biomarkers of Alzheimer's disease" 105 : 14052-14057, 2008

      31 Jack, C. R. Jr, "NIA-AA Research Framework : Toward a biological definition of Alzheimer's disease" 14 : 535-562, 2018

      32 Liang, Q. C., "Mean platelet volume and platelet distribution width in vascular dementia and Alzheimer's disease" 25 : 433-438, 2014

      33 Korniluk, A., "Mean Platelet Volume(MPV) : New perspectives for an old marker in the course and prognosis of inflammatory conditions" 2019 : 9213074-, 2019

      34 DeKosky, S. T., "Looking backward to move forward : early detection of neurodegenerative disorders" 302 : 830-834, 2003

      35 Biino, G., "Influence of age, sex and ethnicity on platelet count in five Italian geographic isolates : mild thrombocytopenia may be physiological" 157 : 384-387, 2012

      36 Muche, A., "Hypoxic stress, brain vascular system, and β-amyloid : a primary cell culture study" 18 : 1-11, 2015

      37 Chao, A. C., "Hyperglycemia increases the production of amyloid beta-peptide leading to decreased endothelial tight junction" 22 : 291-297, 2016

      38 Nakamura, A., "High performance plasma amyloid-βbiomarkers for Alzheimer's disease" 554 : 249-254, 2018

      39 Li, R., "Glycans and the platelet life cycle" 27 : 505-511, 2016

      40 Buniatian, G. H., "Glial fibrillary acidic protein-positive cells of the kidney are capable of raising a protective biochemical barrier similar to astrocytes : expression of metallothionein in podocytes" 267 : 296-306, 2002

      41 d'Uscio, L. V., "Expression and processing of amyloid precursor protein in vascular endothelium" 32 : 20-32, 2017

      42 Blennow, K., "Evolution of Abeta42 and Abeta40 levels and Abeta42/Abeta40 ratio in plasma during progression of Alzheimer's disease : a multicenter assessment" 13 : 205-208, 2009

      43 Kim, H. J., "Elevation of the plasma Aβ40/Aβ42 ratio as a diagnostic marker of sporadic early-onset Alzheimer's disease" 48 : 1043-1050, 2015

      44 Liu, W. W., "Elevated platelet beta-secretase activity in mild cognitive impairment" 24 : 464-468, 2007

      45 Guest, F. L., "Early diagnosis and targeted treatment strategy for improved therapeutic outcomes in Alzheimer's disease" 1260 : 175-191, 2020

      46 Lewczuk, P., "Do we still need positron emission tomography for early Alzheimer's disease diagnosis?" 139 : e60-, 2016

      47 Kukull, W. A., "Dementia epidemiology" 86 : 573-590, 2002

      48 Wang, R. T., "Decreased mean platelet volume and platelet distribution width are associated with mild cognitive impairment and Alzheimer's disease" 47 : 644-649, 2013

      49 Weller, J., "Current understanding of Alzheimer's disease diagnosis and treatment" 7 : 1161-, 2018

      50 Deane, R., "Clearance of amyloid-beta peptide across the blood-brain barrier : implication for therapies in Alzheimer's disease" 8 : 16-30, 2009

      51 Shibata, M., "Clearance of Alzheimer's amyloid-ss(1-40)peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier" 106 : 1489-1499, 2000

      52 Seppälä, T. T., "CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings" 78 : 1568-1575, 2012

      53 Davies, T. A., "Brain endothelial cell enzymes cleave platelet-retained amyloid precursor protein" 132 : 341-350, 1998

      54 Bu, X. L., "Blood-derived amyloid-β protein induces Alzheimer's disease pathologies" 23 : 1948-1956, 2018

      55 Hampel, H., "Blood-based biomarkers for Alzheimer disease : mapping the road to the clinic" 14 : 639-652, 2018

      56 Gowert, N. S., "Blood platelets in the progression of Alzheimer's disease" 9 : e90523-, 2014

      57 Mantzavinos, V., "Biomarkers for Alzheimer's disease diagnosis" 14 : 1149-1154, 2017

      58 Bulbarelli, A., "Aβ42 production in brain capillary endothelial cells after oxygen and glucose deprivation" 49 : 415-422, 2012

      59 Inyushin, M. Y., "Aβ peptide originated from platelets promises new strategy in anti-Alzheimer's drug development" 2017 : 3948360-, 2017

      60 Lambert, J. C., "Association of plasma amyloid beta with risk of dementia : the prospective ThreeCity Study" 73 : 847-853, 2009

      61 Graff-Radford, N. R., "Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease" 64 : 354-362, 2007

      62 Wolk, D. A., "Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology" 68 : 1398-1403, 2011

      63 Sonkar, V. K., "Amyloid β peptide stimulates platelet activation through RhoA-dependent modulation of actomyosin organization" 28 : 1819-1829, 2014

      64 Ovod, V., "Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis" 13 : 841-849, 2017

      65 Roher, A. E., "Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer's disease" 5 : 18-29, 2009

      66 Attems, J., "Amyloid beta peptide 1-42 highly correlates with capillary cerebral amyloid angiopathy and Alzheimer disease pathology" 107 : 283-291, 2004

      67 Chen, G. F., "Amyloid beta : structure, biology and structure-based therapeutic development" 38 : 1205-1235, 2017

      68 Chen, S. H., "Altered peripheral profile of blood cells in Alzheimer disease : A hospital-based case-control study" 96 : e6843-, 2017

      69 Biino, G., "Ageand sex-related variations in platelet count in Italy : a proposal of reference ranges based on 40987 subjects' data" 8 : e54289-, 2013

      70 Do, T. M., "Age-dependent regulation of the blood-brain barrier influx/efflux equilibrium of amyloid-β peptide in a mouse model of Alzheimer's disease(3xTg-AD)" 49 : 287-300, 2016

      71 Davies, T. A., "Activated Alzheimer disease platelets retain more beta amyloid precursor protein" 18 : 147-153, 1997

      72 Shahpasand-Kroner, H., "A two-step immunoassay for the simultaneous assessment of Aβ38, Aβ40 and Aβ42 in human blood plasma supports the Aβ42/Aβ40 ratio as a promising biomarker candidate of Alzheimer's disease" 10 : 121-, 2018

      73 Stevens, R. F., "A sex difference in the platelet count" 37 : 295-300, 1977

      74 Liu, W. W., "A novel reciprocal and biphasic relationship between membrane cholesterol and beta-secretase activity in SH-SY5Y cells and in human platelets" 108 : 341-249, 2009

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-08-03 학술지명변경 외국어명 : Korean Journal of Life Science -> Journal of Life Science KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.37 0.37 0.42
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.43 0.43 0.774 0.09
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼