RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Analysis on nonlinear dynamics of a thin-plate workpiece in milling process with cutting force nonlinearities

      한글로보기

      https://www.riss.kr/link?id=A103789490

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper aims to investigate the nonlinear dynamics of a thin-plate workpiece during milling process with cutting force nonlinearities.

      By modeling the thin-plate workpiece as a cantilevered thin plate and applying the Hamilton’s principle, the equations of motion of thethin-plate workpiece are derived based on the Kirchhoff-plate theory and the von Karman strain-displacement relations. Using the Galerkin’sapproach, the equations of motion are reduced to a two-degree-freedom nonlinear system. The method of Asymptotic Perturbationis utilized to obtain the averaged equations in the case of 1:1 internal resonance and foundational resonance. Numerical methods areused to find the periodic and chaotic oscillations of the cantilevered thin-plate workpiece. The results show that the cantilevered thin-plateworkpiece demonstrate complex dynamic behaviors under time-delay effects, the external and parametric excitations.
      번역하기

      This paper aims to investigate the nonlinear dynamics of a thin-plate workpiece during milling process with cutting force nonlinearities. By modeling the thin-plate workpiece as a cantilevered thin plate and applying the Hamilton’s principle, the e...

      This paper aims to investigate the nonlinear dynamics of a thin-plate workpiece during milling process with cutting force nonlinearities.

      By modeling the thin-plate workpiece as a cantilevered thin plate and applying the Hamilton’s principle, the equations of motion of thethin-plate workpiece are derived based on the Kirchhoff-plate theory and the von Karman strain-displacement relations. Using the Galerkin’sapproach, the equations of motion are reduced to a two-degree-freedom nonlinear system. The method of Asymptotic Perturbationis utilized to obtain the averaged equations in the case of 1:1 internal resonance and foundational resonance. Numerical methods areused to find the periodic and chaotic oscillations of the cantilevered thin-plate workpiece. The results show that the cantilevered thin-plateworkpiece demonstrate complex dynamic behaviors under time-delay effects, the external and parametric excitations.

      더보기

      참고문헌 (Reference)

      1 C. T. Loy, "Vibration of functionally graded cylindrical shells" 41 (41): 309-324, 1999

      2 J. Gradisek, "Using coarse-grained entropy rate to detect chatter in cutting" 214 (214): 941-952, 1998

      3 L. N. L. Lacalla, "Toolpath dependent stability lobes for the milling of thinwalled parts" 4 (4): 377-392, 2008

      4 J. Gradisek, "Time series analysis in metal cutting: chatter versus chatter-free cutting" 12 (12): 839-854, 1998

      5 A. J. Tang, "Three-dimensional stability lobe and maximum material removal rate in end milling of thinwalled plate" 43 (43): 33-39, 2009

      6 W. A. Kline, "The prediction of cutting forces in end milling with application to cornering cuts" 22 (22): 7-22, 1982

      7 S. Herranz, "The milling of airframe components with low rigidity" 219 (219): 789-801, 2005

      8 T. Insperger, "Stability of the milling process" 49 (49): 47-57, 2000

      9 U. Bravo, "Stability limits of milling considering the flexibility of the workpiece and the machine" 45 (45): 1669-1680, 2005

      10 A. Azeem, "Simplified and efficient calibration of a mechanistic cutting force model for ball-end milling" 44 (44): 291-298, 2004

      1 C. T. Loy, "Vibration of functionally graded cylindrical shells" 41 (41): 309-324, 1999

      2 J. Gradisek, "Using coarse-grained entropy rate to detect chatter in cutting" 214 (214): 941-952, 1998

      3 L. N. L. Lacalla, "Toolpath dependent stability lobes for the milling of thinwalled parts" 4 (4): 377-392, 2008

      4 J. Gradisek, "Time series analysis in metal cutting: chatter versus chatter-free cutting" 12 (12): 839-854, 1998

      5 A. J. Tang, "Three-dimensional stability lobe and maximum material removal rate in end milling of thinwalled plate" 43 (43): 33-39, 2009

      6 W. A. Kline, "The prediction of cutting forces in end milling with application to cornering cuts" 22 (22): 7-22, 1982

      7 S. Herranz, "The milling of airframe components with low rigidity" 219 (219): 789-801, 2005

      8 T. Insperger, "Stability of the milling process" 49 (49): 47-57, 2000

      9 U. Bravo, "Stability limits of milling considering the flexibility of the workpiece and the machine" 45 (45): 1669-1680, 2005

      10 A. Azeem, "Simplified and efficient calibration of a mechanistic cutting force model for ball-end milling" 44 (44): 291-298, 2004

      11 C. M. Wang, "Shear deformable beams and plates" Elsevier 2000

      12 R. P. H. Faassen, "Prediction of regenerative chatter by modeling and analysis o f high-speed milling" 43 (43): 1437-1446, 2003

      13 F. W. Taylor, "On the art of cutting metal" 28 : 1856-1915, 1907

      14 B. Balachandran, "Observations of modal interaction in resonantly forced beam-mass structures" 2 (2): 77-117, 1991

      15 W. Zhang, "Nonlinear vibrations of shell-shaped workpieces during high-speed milling" 72 (72): 767-787, 2013

      16 G. Stepan, "Nonlinear vibrations of highly interrupted machining" 59-64, 2001

      17 A. H. Nayfeh, "Nonlinear oscillations" Wiley 1974

      18 B. Balachandran, "Nonlinear dynamics of milling process" 359 : 793-819, 2001

      19 T. Insperger, "Multiple chatter frequencies in milling process" 262 (262): 333-345, 2003

      20 A. H. Nayfeh, "Modal interactions in dynamical and structural systems" 42 (42): 1989

      21 R. Zhu, "Mechanistic modeling of the ball end milling process for multi-axis machining of free-form surfaces" 123 (123): 369-379, 2001

      22 J. Gradisek, "Mechanistic identification of specific force coefficients for a general end mill" 44 (44): 401-414, 2003

      23 S. S. Rao, "Mechanical vibrations" Prentice Hall 2005

      24 M. A. Davies, "Impact dynamics in milling of thin-walled structures" 22 (22): 375-392, 2000

      25 X. Zhao, "Geometrically nonlinear analysis of functionally graded shells" 51 (51): 131-144, 2009

      26 T. Bailey, "Generic simulations approach for multi-axis machining, Parts 1 and 2" 124 (124): 624-642, 2002

      27 L. Y. Tong, "Free-vibration of composite laminated conical shells" 35 (35): 47-51, 1993

      28 S. Jayaram, "Estimation of the specific cutting pressures for mechanistic cutting force models" 41 (41): 265-281, 2001

      29 B. Balachandran, "Dynamics of elastic structures excited by harmonic and aharmonic impactor motions" 9 (9): 265-279, 2003

      30 M. X. Zhao, "Dynamics and stability of milling process" 38 (38): 2233-2248, 2001

      31 G. Stepan, "Dynamics and Chaos in Manufacturing Processes" Wiley 165-192, 1998

      32 T. Y. Ng, "Dynamic stability of cross-ply laminated composite cylindrical shells" 40 (40): 805-823, 1998

      33 F. J. Campa, "Chatter avoidance in the milling of thin floors with bull-nose end mills: Model and stability diagrams" 51 (51): 43-53, 2011

      34 I. Grabec, "Chaotic dynamics of the cutting process" 28 (28): 19-32, 1988

      35 J. Tlusty, "Basic nonliearity in machining chatter" 30 (30): 299-304, 1981

      36 Y. Altintas, "Analytical prediction of stability lobes in milling" 44 (44): 357-362, 1995

      37 S. T. Chiang, "Analysis of cutting forces in ball-end milling" 47 (47): 231-249, 1995

      38 F. Koenigsberger, "An investigation into cutting force pulsations during milling operations" 1 : 15-33, 1996

      39 V. V. Zozulya, "A high order theory for functionally graded axisymmetric cylindrical shells" 60 (60): 12-22, 2012

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼