RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Potential advantages of coupling supercritical CO<sub>2</sub> Brayton cycle to water cooled small and medium size reactor

      한글로보기

      https://www.riss.kr/link?id=A107555727

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The supercritical carbon dioxide (S-CO<SUB>2</SUB>) Brayton cycle is being considered as a favorable candidate for the next generation nuclear reactors power conversion systems. Major benefits of the S-CO<SUB>2</SUB> Bray...

      The supercritical carbon dioxide (S-CO<SUB>2</SUB>) Brayton cycle is being considered as a favorable candidate for the next generation nuclear reactors power conversion systems. Major benefits of the S-CO<SUB>2</SUB> Brayton cycle compared to other Brayton cycles are: (1) high thermal efficiency in relatively low turbine inlet temperature, (2) compactness of the turbomachineries and heat exchangers and (3) simpler cycle layout at an equivalent or superior thermal efficiency. However, these benefits can be still utilized even in the water-cooled reactor technologies under special circumstances. A small and medium size water-cooled nuclear reactor (SMR) has been gaining interest due to its wide range of application such as electricity generation, seawater desalination, district heating and propulsion. Another key advantage of a SMR is that it can be transported from one place to another mostly by maritime transport due to its small size, and sometimes even through a railway system. Therefore, the combination of a S-CO<SUB>2</SUB> Brayton cycle with a SMR can reinforce any advantages coming from its small size if the S-CO<SUB>2</SUB> Brayton cycle has much smaller size components, and simpler cycle layout compared to the currently considered steam Rankine cycle. In this paper, SMART (System-integrated Modular Advanced ReacTor), a 330MW<SUB>th</SUB> integral reactor developed by KAERI (Korea Atomic Energy Institute) for multipurpose utilization, is considered as a potential candidate for applying the S-CO<SUB>2</SUB> Brayton cycle and advantages and disadvantages of the proposed system will be discussed in detail. In consideration of SMART condition, the turbine inlet pressure and size of heat exchangers are analyzed by using in-house code developed by KAIST-Khalifa University joint research team. According to the cycle evaluation, the maximum cycle efficiency under 310<SUP>o</SUP>C is 30.05% at 22MPa of the compressor outlet pressure and 36% of flow split ratio (FSR) with 82m<SUP>3</SUP> of total heat exchanger volume while the upper bound of the total cycle efficiency is 37% with ideal components within 310<SUP>o</SUP>C. The total volume of turbomachinery which can afford 330MW<SUB>th</SUB> of SMR is less than 1.4m<SUP>3</SUP> without casing. All the obtained results are compared to the existing SMART system along with its implication to other existing or conceptual SMRs in terms of overall performance in detail.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼