RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Machine learning modeling and DOE-assisted optimization in synthesis of nanosilica particles via Stöber method

      한글로보기

      https://www.riss.kr/link?id=A108109601

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Silica nanoparticles, which have a broad range of sizes and specific surface features, have been used in many industrial applications. This study was conducted to synthesize monodispersed silica nanoparticles directly from tetraethyl orthosilicate (TEOS) with an alkaline catalyst (NH<sub>3</sub>) based on the sol-gel process and the Stöber method. A central composite design (CCD) is used to build a second-order (quadratic) model for the response variables without requiring a complete three-level factorial experiment. The process was then optimized to achieve the minimum particle size with the lowest concentration of TEOS. Dynamic light scattering and scanning electron microscopy were used to analyze the size, dispersity, and morphology of the synthesized nanoparticles. After optimization, a confirmation test was carried out to evaluate the confidence level of the software prediction. The results revealed that the predicted optimization is consistent with experimental procedures, and the model is significant at the 95% confidence level.
      번역하기

      Silica nanoparticles, which have a broad range of sizes and specific surface features, have been used in many industrial applications. This study was conducted to synthesize monodispersed silica nanoparticles directly from tetraethyl orthosilicate (TE...

      Silica nanoparticles, which have a broad range of sizes and specific surface features, have been used in many industrial applications. This study was conducted to synthesize monodispersed silica nanoparticles directly from tetraethyl orthosilicate (TEOS) with an alkaline catalyst (NH<sub>3</sub>) based on the sol-gel process and the Stöber method. A central composite design (CCD) is used to build a second-order (quadratic) model for the response variables without requiring a complete three-level factorial experiment. The process was then optimized to achieve the minimum particle size with the lowest concentration of TEOS. Dynamic light scattering and scanning electron microscopy were used to analyze the size, dispersity, and morphology of the synthesized nanoparticles. After optimization, a confirmation test was carried out to evaluate the confidence level of the software prediction. The results revealed that the predicted optimization is consistent with experimental procedures, and the model is significant at the 95% confidence level.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼