Many efforts for finding smooth curves and surfaces satisfying given constraints have been made, and interpolation and approximation theories with the help of computers have played an important role in this endeavour. Most research in curve and surfac...
Many efforts for finding smooth curves and surfaces satisfying given constraints have been made, and interpolation and approximation theories with the help of computers have played an important role in this endeavour. Most research in curve and surface modeling has been largely dominated by the theory of parametric representations. While they have been successfully used in representing physical objects, parametric surfaces are confronted with some problems when objects are represented and manipulated in geometric modeling systems. In recent year, increasing attention has been paid to implicit algebraic surfaces since they are often more effective than parametric surfaces are. In this paper, we summarize the geometric properties and computational processes of objects represented using implicit algebraic functions and explain of the implementation of design tools which can design curves and surfaces of revolution. These surfaces of revolution are played an importance role in effective areas such as CAD and CAM.