RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      3C (Chromatin Conformation Capture); A Technique to Study Chromatin Organization

      한글로보기

      https://www.riss.kr/link?id=A99530266

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      3C 는 진핵세포의 핵에서 크로마틴의 입체 구조/구성을 알아보는 연구 기법이다. 이 기법은 살아있는 세포를 포름알데히드로 처리하여 단백질들 사이의 결합 및 단백질과 DNA 사이의 결합을 고정시킨 후, 제한효소로 DNA를 절단하고, 그 절편들의 연결 빈도를 측정함으로써 DNA 절편 사이의 물리적 근접성을 보여준다. 이 기법을 이용하여 복합 유전자 좌위인 β-글로빈 좌위에서 locus control region이 전사가 활발한 유전자와 가까이 위치하고 있음이 밝혀졌으며, 이러한 결과는 크로마틴 입체 구조가 유전자 전사 조절에 관여함을 나타낸다. 또한 3C 기법은 ChIP 및 genome-wide sequencing과 결합되어 다양한 기술로 진화되었다. 본 총설은 3C의 원리 및 과정을 짚어보고, 3C 기법으로 밝혀진 β-글로빈 좌위의 크로마틴 입체 구조를 설명하고자 하며, 나아가 3C를 기본으로 한 다양한 응용 연구 기법도 살펴보고자 한다.
      번역하기

      3C 는 진핵세포의 핵에서 크로마틴의 입체 구조/구성을 알아보는 연구 기법이다. 이 기법은 살아있는 세포를 포름알데히드로 처리하여 단백질들 사이의 결합 및 단백질과 DNA 사이의 결합을 ...

      3C 는 진핵세포의 핵에서 크로마틴의 입체 구조/구성을 알아보는 연구 기법이다. 이 기법은 살아있는 세포를 포름알데히드로 처리하여 단백질들 사이의 결합 및 단백질과 DNA 사이의 결합을 고정시킨 후, 제한효소로 DNA를 절단하고, 그 절편들의 연결 빈도를 측정함으로써 DNA 절편 사이의 물리적 근접성을 보여준다. 이 기법을 이용하여 복합 유전자 좌위인 β-글로빈 좌위에서 locus control region이 전사가 활발한 유전자와 가까이 위치하고 있음이 밝혀졌으며, 이러한 결과는 크로마틴 입체 구조가 유전자 전사 조절에 관여함을 나타낸다. 또한 3C 기법은 ChIP 및 genome-wide sequencing과 결합되어 다양한 기술로 진화되었다. 본 총설은 3C의 원리 및 과정을 짚어보고, 3C 기법으로 밝혀진 β-글로빈 좌위의 크로마틴 입체 구조를 설명하고자 하며, 나아가 3C를 기본으로 한 다양한 응용 연구 기법도 살펴보고자 한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      3C (chromatin conformation capture) is a technique to analyze chromatin organization in nuclei of eukaryotic cells. The procedure of 3C includes the formaldehyde treatment of cells to fix interactions between proteins and between proteins and DNA in chromatin, the digestion of fixed chromatin with restriction enzyme, and the ligation of fragmented DNA. The efficiency of DNA ligation represents proximity between DNA fragments in chromatin organization. Studies in the β-globin locus using 3C showed that the locus control region is in close proximity to the transcriptionally-active globin genes, indicating that chromatin organization has a role in transcriptional regulation of the genes. 3C has been advanced by combining with ChIP and genome-wide sequencing. This review presents the principle and procedure of the 3C technique, the chromatin organization of the β-globin locus explained by 3C, and advanced techniques based on 3C.
      번역하기

      3C (chromatin conformation capture) is a technique to analyze chromatin organization in nuclei of eukaryotic cells. The procedure of 3C includes the formaldehyde treatment of cells to fix interactions between proteins and between proteins and DNA in c...

      3C (chromatin conformation capture) is a technique to analyze chromatin organization in nuclei of eukaryotic cells. The procedure of 3C includes the formaldehyde treatment of cells to fix interactions between proteins and between proteins and DNA in chromatin, the digestion of fixed chromatin with restriction enzyme, and the ligation of fragmented DNA. The efficiency of DNA ligation represents proximity between DNA fragments in chromatin organization. Studies in the β-globin locus using 3C showed that the locus control region is in close proximity to the transcriptionally-active globin genes, indicating that chromatin organization has a role in transcriptional regulation of the genes. 3C has been advanced by combining with ChIP and genome-wide sequencing. This review presents the principle and procedure of the 3C technique, the chromatin organization of the β-globin locus explained by 3C, and advanced techniques based on 3C.

      더보기

      목차 (Table of Contents)

      • abstract
      • 서론
      • 3C 기법의 실험 원리
      • 3C 기법의 실험 과정
      • 3C 기법의 적용; β-글로빈 좌위의 크로마틴 고리 형성
      • abstract
      • 서론
      • 3C 기법의 실험 원리
      • 3C 기법의 실험 과정
      • 3C 기법의 적용; β-글로빈 좌위의 크로마틴 고리 형성
      • 3C 기법의 응용
      • 3C 기법의 미래
      • References
      • 초록
      더보기

      참고문헌 (Reference)

      1 Palstra, R. J., "The β-globin nuclear compartment in development and erythroid differentiation" 35 : 190-194, 2003

      2 Dekker, J., "The three 'C' s of chromosome conformation capture: controls, controls, controls" 3 : 17-21, 2006

      3 Majumder, P., "The insulator factor CTCF controls MHC class II gene expression and is required for the formation of long-distance chromatin interactions" 205 : 785-798, 2008

      4 김예운, "The distinctive roles of erythroid specific activator GATA-1 and NF-E2 in transcription of the human fetal gamma-globin genes" OXFORD UNIV PRESS 39 (39): 6944-6955, 201109

      5 Hagège, H., "Quantitative analysis of chromosome conformation capture assays (3C-qPCR)" 2 : 1722-1733, 2007

      6 Tiwari, V. K., "PcG proteins, DNA methylation, and gene repression by chromatin looping" 6 : 2911-2927, 2008

      7 Simonis, M., "Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C)" 38 : 1348-1354, 2006

      8 Horike, S., "Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome" 37 : 31-40, 2005

      9 Tolhuis, B., "Looping and interaction between hypersensitive sites in the active β-globin locus" 10 : 1453-1465, 2002

      10 Spilianakis, C. G, "Long-range intrachromosomal interactions in the T helper type 2 cytokine locus" 5 : 1017-1027, 2004

      1 Palstra, R. J., "The β-globin nuclear compartment in development and erythroid differentiation" 35 : 190-194, 2003

      2 Dekker, J., "The three 'C' s of chromosome conformation capture: controls, controls, controls" 3 : 17-21, 2006

      3 Majumder, P., "The insulator factor CTCF controls MHC class II gene expression and is required for the formation of long-distance chromatin interactions" 205 : 785-798, 2008

      4 김예운, "The distinctive roles of erythroid specific activator GATA-1 and NF-E2 in transcription of the human fetal gamma-globin genes" OXFORD UNIV PRESS 39 (39): 6944-6955, 201109

      5 Hagège, H., "Quantitative analysis of chromosome conformation capture assays (3C-qPCR)" 2 : 1722-1733, 2007

      6 Tiwari, V. K., "PcG proteins, DNA methylation, and gene repression by chromatin looping" 6 : 2911-2927, 2008

      7 Simonis, M., "Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C)" 38 : 1348-1354, 2006

      8 Horike, S., "Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome" 37 : 31-40, 2005

      9 Tolhuis, B., "Looping and interaction between hypersensitive sites in the active β-globin locus" 10 : 1453-1465, 2002

      10 Spilianakis, C. G, "Long-range intrachromosomal interactions in the T helper type 2 cytokine locus" 5 : 1017-1027, 2004

      11 Ott, C. J., "Intronic enhancers coordinate epithelial-specific looping of the active CFTR locus" 106 : 19934-19939, 2009

      12 Murrell, A., "Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops" 36 : 889-893, 2004

      13 Dean, A., "In the loop: long range chromatin interactions and gene regulation" 10 : 3-10, 2011

      14 Jing, H., "Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus" 29 : 232-242, 2008

      15 Krivega, I., "Enhancer and promoter interactions-long distance calls" 22 : 79-85, 2012

      16 Ethier, S. D., "Discovering genome regulation with 3C and 3C-related technologies" 1819 : 401-410, 2012

      17 Fang, X., "Cooperativeness of the higher chromatin structure of the β-globin locus revealed by the deletion mutations of DNase I hypersensitive site 3 of the LCR" 365 : 31-37, 2007

      18 Lieberman-Aiden, E., "Comprehensive mapping of long-range interactions reveals folding principles of the human genome" 326 : 289-293, 2009

      19 Palstra, R. J., "Close encounters of the 3C kind: long-range chromatin interactions and transcriptional regulation" 8 : 297-309, 2009

      20 Zhao, Z., "Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions" 38 : 1341-1347, 2006

      21 Dostie, J., "Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements" 16 : 1299-1309, 2006

      22 Kim, S., "Chromatin structure of the LCR in the human β-globin locus transcribing the adult δ- and β-globin genes" 44 : 505-513, 2012

      23 Kadauke, S., "Chromatin loops in gene regulation" 1789 : 17-25, 2009

      24 Gheldof, N., "Cell-type-specific long-range looping interactions identify distant regulatory elements of the CFTR gene" 38 : 4325-4336, 2010

      25 Dekker, J., "Capturing chromosome conformation" 295 : 1306-1311, 2002

      26 Splinter, E., "CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus" 20 : 2349-2354, 2006

      27 Kurukuti, S., "CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2" 103 : 10684-10689, 2006

      28 Orlando, V., "Analysis of chromatin structure by in vivo formaldehyde cross-linking" 11 : 205-214, 1997

      29 Fullwood, M. J., "An oestrogen-receptor-alpha-bound human chromatin interactome" 462 : 58-64, 2009

      30 Tsytsykova, A. V., "Activation-dependent intrachromosomal interactions formed by the TNF gene promoter and two distal enhancers" 104 : 16850-16855, 2007

      31 de Wit, E., "A decade of 3C technologies: insights into nuclear organization" 26 : 11-24, 2012

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-08-03 학술지명변경 외국어명 : Korean Journal of Life Science -> Journal of Life Science KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.37 0.37 0.42
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.43 0.43 0.774 0.09
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼