RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Characteristics of a Titanium-oxide Layer Prepared by Plasma Electrolytic Oxidation for Hydrogen-ion Sensing

      한글로보기

      https://www.riss.kr/link?id=A106109017

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The characteristics of a titanium oxide layer prepared using a plasma electrolytic oxidation (PEO) process were investigated, using an extended gate ion sensitive field effect transistor (EG-ISFET) to confirm the layer’s capability to react with hydrogen ions. The surface morphology and element distribution of the PEO-processed titanium oxide were observed and analyzed using field-emission scanning-electron microscopy (FE-SEM) and energy-distribution spectroscopy (EDS). The titanium oxide prepared by the PEO process was utilized as a hydrogen-ion sensing membrane and an extended gate insulator. A commercially available n-channel enhancement MOSFET (metal-oxide-semiconductor FET) played a role as a transducer. The responses of the PEO-processed titanium oxide to different pH solutions were analyzed. The output drain current was linearly related to the pH solutions in the range of pH 4 to pH 12. It was confirmed that the titanium-oxide layer prepared by the PEO process could feasibly be used as a hydrogen-ion-sensing membrane for EGFET measurements.
      번역하기

      The characteristics of a titanium oxide layer prepared using a plasma electrolytic oxidation (PEO) process were investigated, using an extended gate ion sensitive field effect transistor (EG-ISFET) to confirm the layer’s capability to react with hyd...

      The characteristics of a titanium oxide layer prepared using a plasma electrolytic oxidation (PEO) process were investigated, using an extended gate ion sensitive field effect transistor (EG-ISFET) to confirm the layer’s capability to react with hydrogen ions. The surface morphology and element distribution of the PEO-processed titanium oxide were observed and analyzed using field-emission scanning-electron microscopy (FE-SEM) and energy-distribution spectroscopy (EDS). The titanium oxide prepared by the PEO process was utilized as a hydrogen-ion sensing membrane and an extended gate insulator. A commercially available n-channel enhancement MOSFET (metal-oxide-semiconductor FET) played a role as a transducer. The responses of the PEO-processed titanium oxide to different pH solutions were analyzed. The output drain current was linearly related to the pH solutions in the range of pH 4 to pH 12. It was confirmed that the titanium-oxide layer prepared by the PEO process could feasibly be used as a hydrogen-ion-sensing membrane for EGFET measurements.

      더보기

      참고문헌 (Reference)

      1 W. Bunjongpru, "Very low drift and high sensitivity of nanocrystal-TiO2 sensing membrane on pHISFET fabricated by CMOS compatible process" 267 : 206-211, 2013

      2 P. Bergveld, "Thirty years of ISFETOLOGY : What happened in the past 30 years and what may happen in the next 30 years" 88 (88): 1-20, 2003

      3 B. G. Streetman, "Solid State Electronic Devices" Pearson Prentice Hall 283-285, 2006

      4 M. J. Schöning, "Recent advances in biologically sensitive field-effect transistors(BioFETs)" 127 (127): 1137-1151, 2002

      5 S. Aliasghari, "Plasma electrolytic oxidation of titanium in a phosphate/silicateelectrolyte and tribological performance of the coatings" 316 : 463-476, 2014

      6 X. Lu, "Plasma electrolytic oxidation coatings with particle additions – A review" 307-C : 1165-1182, 2016

      7 Y. Cui, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species" 293 (293): 1289-1292, 2001

      8 E. Stern, "Label-free immunodetection with CMOS-compatible semiconducting nanowires" 445 : 519-522, 2007

      9 X. Lu, "Influence of particle additions on corrosion and wear resistance of plasma electrolytic oxidation coatings on Mg alloy" 352 : 1-14, 2018

      10 K. B. Parizi, "ISFET pH Sensitivity : Counter-Ions Play a Key Role" 7 : 41305(1)-41305(10), 2017

      1 W. Bunjongpru, "Very low drift and high sensitivity of nanocrystal-TiO2 sensing membrane on pHISFET fabricated by CMOS compatible process" 267 : 206-211, 2013

      2 P. Bergveld, "Thirty years of ISFETOLOGY : What happened in the past 30 years and what may happen in the next 30 years" 88 (88): 1-20, 2003

      3 B. G. Streetman, "Solid State Electronic Devices" Pearson Prentice Hall 283-285, 2006

      4 M. J. Schöning, "Recent advances in biologically sensitive field-effect transistors(BioFETs)" 127 (127): 1137-1151, 2002

      5 S. Aliasghari, "Plasma electrolytic oxidation of titanium in a phosphate/silicateelectrolyte and tribological performance of the coatings" 316 : 463-476, 2014

      6 X. Lu, "Plasma electrolytic oxidation coatings with particle additions – A review" 307-C : 1165-1182, 2016

      7 Y. Cui, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species" 293 (293): 1289-1292, 2001

      8 E. Stern, "Label-free immunodetection with CMOS-compatible semiconducting nanowires" 445 : 519-522, 2007

      9 X. Lu, "Influence of particle additions on corrosion and wear resistance of plasma electrolytic oxidation coatings on Mg alloy" 352 : 1-14, 2018

      10 K. B. Parizi, "ISFET pH Sensitivity : Counter-Ions Play a Key Role" 7 : 41305(1)-41305(10), 2017

      11 B. -K. Sohn, "ISFET glucose and sucrose sensors by using platinum electrode and photo-crosslinkable polymers" 41 (41): 7-11, 1997

      12 Z. Yao, "Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti–6Al–4V alloy" 254 (254): 4084-4091, 2008

      13 S. Xu, "Graphene foam field-effect transistor for ultra-sensitive label-free detection of ATP" 284 : 125-133, 2019

      14 K. Gangwar, "Friction stir welding of titanium alloys : A review" 141 : 230-255, 2018

      15 이상권, "Extended Gate를 이용한 MOSFET형 단백질 센서 제작 및 특성" 한국센서학회 16 (16): 104-109, 2007

      16 L. -S. Park, "Effect of membrane structure on the performance of field-effect transistor potassium-sensitive sensor" 57 (57): 239-243, 1996

      17 P. Bergveld, "Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements" BME-17 : 70-71, 1970

      18 M. Kaisti, "Detection principles of biological and chemical FET sensors" 98 : 437-448, 2017

      19 A. L. Yerokhin, "Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy" 130 (130): 195-206, 2000

      20 V. Pachauri, "Biologically sensitive fieldeffect transistors : from ISFETs to NanoFETs" 60 (60): 81-90, 2016

      21 R. R. Boyer, "An overview on the use of titanium in the aerospace industry" 213 (213): 103-114, 1996

      22 B. -K. Sohn, "A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen" 34 (34): 435-440, 1996

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 계속평가 신청대상 (계속평가)
      2021-12-01 평가 등재후보로 하락 (재인증) KCI등재후보
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.22 0.22 0.16
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.15 0.13 0.319 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼