무의식적인 손-얼굴의 접촉으로 인한 감염의 문제점을 해결하기 위해, 얼굴 만지기 행동을 인식할 필요가 있다. 본 연구는 최근 각광을 받는 딥러닝 기술을 이용하여 비디오 영상에서 얼굴 ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A106989161
2020
Korean
567
학술저널
508-511(4쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
무의식적인 손-얼굴의 접촉으로 인한 감염의 문제점을 해결하기 위해, 얼굴 만지기 행동을 인식할 필요가 있다. 본 연구는 최근 각광을 받는 딥러닝 기술을 이용하여 비디오 영상에서 얼굴 ...
무의식적인 손-얼굴의 접촉으로 인한 감염의 문제점을 해결하기 위해, 얼굴 만지기 행동을 인식할 필요가 있다. 본 연구는 최근 각광을 받는 딥러닝 기술을 이용하여 비디오 영상에서 얼굴 만지기 행동 인식에 대한 연구이다. 우선, 비디오 영상에서 얼굴 만지기와 관련된 11가지 행동에 대한 시, 공간적 특징을 컨볼루션 신경망을 통해 추출한다. 추출된 정보는 각 행동 레이블로 인코딩되어 비디오 영상에서 얼굴 만지기 행동을 분류한다. 또한, 3D, 2D 컨볼루션 신경망의 대표 네트워크인 I3D, MobileNet v3에 대해 비교 실험을 진행한다. 제안하는 시스템을 적용하영 인간의 행동을 분류하는 실험을 진행했을 때, 얼굴을 만지는 행동을 99%의 확률로 구분했다. 이 시스템을 이용하여 일반인이 무의식적인 얼굴 만지기 행동에 대해서 정량적으로 또는 적시적으로 인식을 하여, 안전한 위생 습관을 확립하여 감염의 확산방지에 도움을 줄수 있기를 바란다.
XAI 기반의 공공시설물 건전도 안전검사 평가시스템 연구
Guided Grad-CAM 을 이용한 영상 내 송전설비 검출기법
Client-driven Music Genre Classification Framework
Wi-Fi RSSI Heat Maps Based Indoor Localization System Using Deep Convolutional Neural Networks