RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      The study of electronic, elastic, magnetic and optical response of Zn1-xTixY (Y=S, Se) through mBJ potential

      한글로보기

      https://www.riss.kr/link?id=A103562674

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      To explore the structural, electronic, magnetic and optical properties of Zn1-xTixY (Y=S, Se) alloys, in the composition range 0 ≤ x ≤ 1, we have applied full-potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) scheme, which is based on the density functional theory (DFT). Structural optimizations have been done in ferromagnetic (FM) and antiferromagnetic (AFM) phase by using Wu eCohen generalized gradient approximation (WC-GGA), whereas recently developed modified Becke and Johnson (mBJ) potential was employed to study electronic and optical properties. The lower value of ground state energy and negative enthalpy of formation confirm stability in the FM phase. Due to the spin polarization of electrons in the Ti-d orbital, origin of half-metallic ferromagnetism has been expressed by the calculated band structures, electronic density of states (DOS) and magnetic moments.
      We also have calculated the exchange splitting energy Dx (d), crystal field energy (DEcrystal = Et2g Eeg) and exchange constants (N0a and N0b). The negative value of exchange constant (N0b) and large splitting of 3d-states of Ti show that the down spin potential is more effective than up spin. Finally, the results of optical parameters such as complex dielectric constant ε (u), refractive index n (u), normal incident reflectivity R (u), absorption coefficient ɑ (u), optical conductivity s (u) and optical loss factor L (u) are discussed in the energy range 0e14 eV. Moreover, we have verified the Penn's model by showing the inverse relation between the static dielectric constant and the optical band gap. The direct relation between static dielectric constant and static refractive index has been observed by increasing the composition of Ti. The calculated parameters provide valuable theoretical information for optical and spintronics device applications.
      번역하기

      To explore the structural, electronic, magnetic and optical properties of Zn1-xTixY (Y=S, Se) alloys, in the composition range 0 ≤ x ≤ 1, we have applied full-potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) scheme, whic...

      To explore the structural, electronic, magnetic and optical properties of Zn1-xTixY (Y=S, Se) alloys, in the composition range 0 ≤ x ≤ 1, we have applied full-potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) scheme, which is based on the density functional theory (DFT). Structural optimizations have been done in ferromagnetic (FM) and antiferromagnetic (AFM) phase by using Wu eCohen generalized gradient approximation (WC-GGA), whereas recently developed modified Becke and Johnson (mBJ) potential was employed to study electronic and optical properties. The lower value of ground state energy and negative enthalpy of formation confirm stability in the FM phase. Due to the spin polarization of electrons in the Ti-d orbital, origin of half-metallic ferromagnetism has been expressed by the calculated band structures, electronic density of states (DOS) and magnetic moments.
      We also have calculated the exchange splitting energy Dx (d), crystal field energy (DEcrystal = Et2g Eeg) and exchange constants (N0a and N0b). The negative value of exchange constant (N0b) and large splitting of 3d-states of Ti show that the down spin potential is more effective than up spin. Finally, the results of optical parameters such as complex dielectric constant ε (u), refractive index n (u), normal incident reflectivity R (u), absorption coefficient ɑ (u), optical conductivity s (u) and optical loss factor L (u) are discussed in the energy range 0e14 eV. Moreover, we have verified the Penn's model by showing the inverse relation between the static dielectric constant and the optical band gap. The direct relation between static dielectric constant and static refractive index has been observed by increasing the composition of Ti. The calculated parameters provide valuable theoretical information for optical and spintronics device applications.

      더보기

      참고문헌 (Reference)

      1 Xianfu Wang, 38 : 57-90, 2013

      2 P. A. Berry, 18 : 15062-15072, 2010

      3 Urte Hotje, 5 : 1259-1262, 2003

      4 B. Gilbert, 66 : 245205-, 2002

      5 Shiv P. Patel, 323 : 2734-2740, 2011

      6 Iu Nasieka, 38 : 272-277, 2014

      7 Xiaosheng Fang, 56 : 175-287, 2011

      8 Ivan Radevici, 38 : 49-54, 2014

      9 A. Jamshidi, 2015 : 1-9, 2015

      10 H. Hu, 28 : 536-, 2006

      1 Xianfu Wang, 38 : 57-90, 2013

      2 P. A. Berry, 18 : 15062-15072, 2010

      3 Urte Hotje, 5 : 1259-1262, 2003

      4 B. Gilbert, 66 : 245205-, 2002

      5 Shiv P. Patel, 323 : 2734-2740, 2011

      6 Iu Nasieka, 38 : 272-277, 2014

      7 Xiaosheng Fang, 56 : 175-287, 2011

      8 Ivan Radevici, 38 : 49-54, 2014

      9 A. Jamshidi, 2015 : 1-9, 2015

      10 H. Hu, 28 : 536-, 2006

      11 A. A. Bol, 14 : 1121-, 2002

      12 W. Peng, 282 : 179-, 2005

      13 He Hu, 28 : 536-550, 2006

      14 S. J. Pearton, 22 : 932-, 2004

      15 A. M. Nazmul, 95 : 017201-, 2005

      16 T. Dietl, 287 : 1019-1022, 2000

      17 R. D. McNorton, 78 : 075209-, 2008

      18 R. A. Stern, 95 : 7468-, 2004

      19 D. Amaranatha Reddy, 46 : 731-736, 2011

      20 A. Gallian, 86 : 091105-, 2005

      21 Dong Hyun Hwang, 7 : 26-, 2012

      22 N. Vivet a, 130 : 1449-1454, 2010

      23 Amah A. N. Ahemen, 4 : 7-15, 2014

      24 C. Rajesh, 10 : 1082-1092, 2015

      25 Yuhong Huang, 555 : 117-122, 2013

      26 S. Ueda, 78 : 205206-, 2008

      27 Bui The Huy, 588 : 127-132, 2014

      28 D. A. Schwartz, 125 : 13205-13218, 2003

      29 P. Yang, 74 : 525-528, 2002

      30 Yifei Chen, 205 : 9-13, 2015

      31 Huiyu Yan, 406 : 545-547, 2011

      32 S. W. Fan, 94 : 152506-, 2009

      33 N. A. Noor, 507 : 356-363, 2010

      34 N. Benkhettous, 1 : 29-34, 2008

      35 R. Khenata, 38 : 29-38, 2006

      36 P. Hohenberg, 136 : B864-B871, 1964

      37 Z. Wu, 73 : 235116-, 2006

      38 A. D. Becke, 124 : 221101-, 2006

      39 D. J. Singh, 82 : 205102-, 2010

      40 S. D. Guo, 93 : 47006-, 2011

      41 M. Sajjad, 343 : 177-, 2013

      42 S. M. Alay-e-Abbas, 14 : 1525-, 2012

      43 S. Jalali-Asadabadi, 45 : 339-, 2016

      44 B. Khan, 647 : 364-, 2015

      45 Yu Feng, 387 : 118-126, 2015

      46 H. Reshak, 543 : 147-, 2012

      47 P. Blaha, Karlheinz Schwartz, Techn. Universitad, Wien, Austria 2001

      48 F. El, 38 : 362-, 2006

      49 R. Khenata, 38 : 29-, 2006

      50 R. Bouhemadou, 45 : 474-, 2009

      51 M. El Amine Monir, 378 : 41-, 2015

      52 M. Jamal, 95 : 592-599, 2014

      53 V. Tvergaard, 71 : 157-, 1988

      54 G. Hayatullah, 420 : 15-, 2013

      55 R. Hill, 65 : 349-, 1952

      56 A. Reuss, 9 : 49-, 1929

      57 Z. J. Wu, 76 : 054115-, 2007

      58 F. Peng, 246 : 71-, 2009

      59 H. Fu, 44 : 774-, 2008

      60 A. Haddou, 48 : 8235-, 2013

      61 H. Katayama-Yoshida, 310 : 2070-2077, 2007

      62 M. Venkatesan, 93 : 177206-, 2004

      63 T. Dietl, 287 : 1019-, 2000

      64 Q. Gao, 163 : 460-, 2015

      65 K. Ozdogan, 113 : 193903-, 2013

      66 G. A. Gaj, 29 : 435-, 1979

      67 S. Sanvito, 63 : 165206-, 2001

      68 S. Sapra, 2 : 605-, 2002

      69 D. Penn, 128 : 2093-, 1962

      70 W. Benstaalia, 16 : 231-237, 2013

      71 W. Benstaalia, 17 : 53-58, 2014

      72 R. Khenata, 136 : 120-125, 2005

      73 Shailaja Jeetendra, 9 : 2944-2954, 2014

      74 M. Bilal, 35 : 072001-, 2014

      75 B. Amin, 106 : 093710-, 2009

      76 B. H. Lee, 41 : 2988-, 1970

      77 I. Khan, 2 : 5122-, 2015

      78 J. R. Bakke, 22 : 4669-4678, 2010

      79 I. Khan, 112 : 073104-, 2012

      80 J. R. Bakke, 21 : 743-751, 2011

      81 I. Khan, 113 : 1285-, 2013

      82 H. Venghaus, 19 : 3071-, 1979

      83 F. Kootstra, 62 : 7071-, 2000

      84 P. Blaha, "WIEN2K, an Augmented-plane-wave + Local Orbitals Program for Calculating Crystal Properties" Karlheinz Schwarz 2001

      85 F. Nye, "Physical Properties of Crystals: Their Representation by Tensors and Matrices" Oxford University Press 1985

      86 W. Voigt, "Lehrbuch der Kristallphysik Teubner" Leipzig 1966

      87 G. Marius, "Kramers-kronig Relations (The Physics of Semiconductors)" Springer 775-776, 2010

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.8 0.18 1.17
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.77 0.297 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼