RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Enhancing gas–liquid volumetric mass transfer coefficient

      한글로보기

      https://www.riss.kr/link?id=A106978128

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      Methane-based biorefineries for biofuel production by microorganisms has gained interest due to theworldwide development of shale gas as an alternative source for fossil fuels. For the practical applicationof biological conversion process to industrial scale, enhancement of the gas–liquid volumetric masstransfer coefficient (kLa) in a gas diffusing system is crucial. This review article provides an overview ofthe developments on gas–liquid volumetric mass transfer enhancement through increasing the gas–liquid mass transfer coefficient term ‘kL’ and/or increasing the gas–liquid interfacial area term ‘a’. Twomajor enhancement methods which are summarized and discussed here include the most recentaccomplishments in gas–liquid mass transfer engineering of gas diffusing systems. The most up-to-datemechanical modification of reactor and additive employment rationales and discussions providing astrong understanding of gas–liquid volumetric mass transfer relationships are presented. Thus, thisreview is expected to inspire new research for future developments and applications in gas–liquid masstransfer engineering for gas diffusing systems.
      번역하기

      Methane-based biorefineries for biofuel production by microorganisms has gained interest due to theworldwide development of shale gas as an alternative source for fossil fuels. For the practical applicationof biological conversion process to industria...

      Methane-based biorefineries for biofuel production by microorganisms has gained interest due to theworldwide development of shale gas as an alternative source for fossil fuels. For the practical applicationof biological conversion process to industrial scale, enhancement of the gas–liquid volumetric masstransfer coefficient (kLa) in a gas diffusing system is crucial. This review article provides an overview ofthe developments on gas–liquid volumetric mass transfer enhancement through increasing the gas–liquid mass transfer coefficient term ‘kL’ and/or increasing the gas–liquid interfacial area term ‘a’. Twomajor enhancement methods which are summarized and discussed here include the most recentaccomplishments in gas–liquid mass transfer engineering of gas diffusing systems. The most up-to-datemechanical modification of reactor and additive employment rationales and discussions providing astrong understanding of gas–liquid volumetric mass transfer relationships are presented. Thus, thisreview is expected to inspire new research for future developments and applications in gas–liquid masstransfer engineering for gas diffusing systems.

      더보기

      참고문헌 (Reference)

      1 M. Zednikova, 2 : 19-, 2018

      2 G. F. Versteeg, 42 : 1103-, 1987

      3 K. Akita, 13 : 84-, 1974

      4 B. Ozbek, 36 : 729-, 2001

      5 M. S. Puthli, 23 : 25-, 2005

      6 A. Fadavi, 112 : 73-, 2005

      7 A. Karimi, 10 : 6-, 2013

      8 M. Ramezani, 279 : 286-, 2015

      9 J. Zhang, 24 : 703-, 2016

      10 M. Yasin, 169 : 637-, 2014

      1 M. Zednikova, 2 : 19-, 2018

      2 G. F. Versteeg, 42 : 1103-, 1987

      3 K. Akita, 13 : 84-, 1974

      4 B. Ozbek, 36 : 729-, 2001

      5 M. S. Puthli, 23 : 25-, 2005

      6 A. Fadavi, 112 : 73-, 2005

      7 A. Karimi, 10 : 6-, 2013

      8 M. Ramezani, 279 : 286-, 2015

      9 J. Zhang, 24 : 703-, 2016

      10 M. Yasin, 169 : 637-, 2014

      11 O. Ozkan, 55 : 2737-, 2000

      12 B. Olle, 45 : 4355-, 2006

      13 H. Zhu, 47 : 7881-, 2008

      14 S. Komati, 49 : 390-, 2010

      15 S. Zhang, 100 : 434-, 2015

      16 J. Lee, 215 : 154-, 2016

      17 J. Kluytmans, 58 : 4719-, 2003

      18 K. Ruthiya, 96 : 55-, 2003

      19 K. C. Ruthiya, 81 : 632-, 2003

      20 S. Yoon, 73 : 399-, 2014

      21 J. L. Rols, 13 : 7-, 1991

      22 A. MoraÄo, 20 : 165-, 1999

      23 A. Kundu, 81 : 640-, 2003

      24 H. Zhu, 48 : 3206-, 2009

      25 S. A. Baz-Rodríguez, 92 : 2352-, 2014

      26 N. Jang, 263 : 375-, 2018

      27 P. Painmanakul, 60 : 6480-, 2005

      28 E. Dumont, 42 : 419-, 2003

      29 R. Sardeing, 61 : 6249-, 2006

      30 M. K. Moraveji, 34 : 465-, 2011

      31 E. Kabir, 82 : 894-, 2018

      32 F. P. Perera, 125 : 141-, 2016

      33 J. S. Gregg, 35 : L08806-, 2008

      34 N. Abas, 69 : 31-, 2015

      35 P. McKendry, 83 : 37-, 2002

      36 M. Mohammadi, 15 : 4255-, 2011

      37 P. C. Munasinghe, 101 : 5013-, 2010

      38 Q. Fei, 32 : 596-, 2014

      39 A. Ahmed, 97 : 1080-, 2007

      40 M. Radler, 109 : 26-, 2011

      41 Z. Jinchuan, 24 : 15-, 2004

      42 K. Chidambarampadmavathy, 15 : 387-, 2015

      43 S. Wasmus, 461 : 14-, 1999

      44 M. L. Yola, 28 : 570-, 2016

      45 G. A. Olah, 44 : 2636-, 2005

      46 L. A. Pellegrini, 88 : 4891-, 2011

      47 K. A. Stone, 128 : 83-92, 2017

      48 X. Ge, 32 : 1460-, 2014

      49 S. N. Naik, 14 : 578-, 2010

      50 P. Dürre, 35 : 63-, 2015

      51 C. A. Haynes, 10 : 331-, 2014

      52 P. Strong, 49 : 4001-, 2015

      53 Z. Duan, 70 : 3369-, 2006

      54 A. A. Chapoy, 220 : 111-, 2004

      55 S. J. Arjunwadkar, 1 : 99-, 1998

      56 A. J. Ungerman, 23 : 613-, 2007

      57 A. Beenackers, 48 : 3109-, 1993

      58 P. Painmanakul, 13 : 13-, 2009

      59 W. T. Tang, 29 : 128-, 1990

      60 J. V. Littlejohns, 129 : 67-, 2007

      61 V. Kuuskraa, "Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States" US Energy Information Administration, US Department of Energy 2013

      62 E. Burt, "Scientific Evidence of Health Effects from Coal Use in Energy Generation" School of Public Health, University of Illinois and Health Care Without Harm 2013

      63 류정관, "Quaternized chitosan-based anion exchange membrane for alkaline direct methanol fuel cells" 한국공업화학회 73 : 254-259, 2019

      64 "National Aeronautics and Space Administration"

      65 P.W. Majsztrik, "Mechanical and Transport Properties of Nafion for PEM Fuel Cells: Temperature and Hydration Effects" Princeton University 2008

      66 이재원, "Gas-liquid mass transfer coefficient of methane in bubble column reactor" 한국화학공학회 32 (32): 1060-1063, 2015

      67 김광민, "Enhancement of methane–water volumetric mass transfer coefficient by inhibiting bubble coalescence with electrolyte" 한국공업화학회 33 : 326-329, 2016

      68 이재원, "Enhanced mass transfer rate of methane via hollow fiber membrane modules for Methylosinus trichosporium OB3b fermentation" 한국공업화학회 39 : 149-152, 2016

      69 김광민, "Enhanced mass transfer rate and solubility of methane via addition of alcohols for Methylosinus trichosporium OB3b fermentation" 한국공업화학회 46 : 350-355, 2017

      70 이수운, "Cobalt-isomorphous substituted SAPO-34 via milling and recrystallization for enhanced catalytic lifetime toward methanol-to-olefin reaction" 한국공업화학회 79 : 443-451, 2019

      71 김광민, "Cationic surfactant as methane–water mass transfer enhancer for the fermentation of Methylosinus trichosporium OB3b" 한국공업화학회 53 : 228-232, 2017

      72 박동현, "Biological conversion of methane to methanol" 한국화학공학회 30 (30): 977-987, 2013

      73 E. Kadic, "An Introduction to Bioreactor Hydrodynamics and Gas–liquid Mass Transfer" John Wiley & Sons 2014

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 3.4 0.75 2.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      2.39 2.24 0.397 0.56
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼