RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      초기재령에서 각종 혼합콘크리트의 염소이온 고정화능력에 관한 연구

      한글로보기

      https://www.riss.kr/link?id=A100165471

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 연구에서는 보통포틀랜드시멘트(OPC: ordinary Portland cement), 플라이애쉬(PFA: pulverised fly ash), 고로슬래그미분말(GGBFS: ground granulated blast furnace slag), 실리카퓸(SF: Silica fume)등의 각종 결합재를 적용한 시멘트 페이스트의 염소이온 고정화능력에 관하여 연구하였다. 각각의 사용 시멘트 페이스트는 40%의 물/결합재로 PFA, GGBFS 및 SF 혼화제의 각기 다른 치환률을 갖도록 하였으며 미리 혼합수내에 결합재 중량당 0.1~0.3%의 염소이온을 배합수내에 혼입 포함시켜 배합되어 제조되었다. 염소이온의 측정은 7일간 양생 후 수분 추출 방법을 이용하여 측정하였다. 실험을 통해 염소이온 고정화 능력이 결합재 종류 및 치환률에 의존하고 있음을 확인하였고, 총 염소이온량의 증가는 염소이온 고정화능력을 제한하여 결론적으로 염소이온 고정화를 감소시키고 있음을 보였다. 본 연구에서 최대 30%의 치환율을 가진 PFA와 60%의 치환률을 가진 GGBFS의 경우는 OPC보다 염소이온고정화 능력이 작았으며, SF의 치환률의 증가는 고정화를 감소시키고 있음을 확인하였으며, 이는 포졸란계 재료의 잠재 수화반응 혹은 공극수의 pH 저하등의 이유로 판단된다. 재령 7일에서의 염소이온의 고정화능력은 염해부식에 대한 저항성으로 나타내어지며, 염분을 혼입한 경우의 고정화능력의 순서는 30%PFA > 10%SF > 60%GGBFS > OPC로 나타났다. 더욱이 염소이온의 고정화 거동은 Langmuir isotherm 및 Freundlich isotherm으로 잘 표현될 수 있음을 보였다.
      번역하기

      본 연구에서는 보통포틀랜드시멘트(OPC: ordinary Portland cement), 플라이애쉬(PFA: pulverised fly ash), 고로슬래그미분말(GGBFS: ground granulated blast furnace slag), 실리카퓸(SF: Silica fume)등의 각종 결합재를 ...

      본 연구에서는 보통포틀랜드시멘트(OPC: ordinary Portland cement), 플라이애쉬(PFA: pulverised fly ash), 고로슬래그미분말(GGBFS: ground granulated blast furnace slag), 실리카퓸(SF: Silica fume)등의 각종 결합재를 적용한 시멘트 페이스트의 염소이온 고정화능력에 관하여 연구하였다. 각각의 사용 시멘트 페이스트는 40%의 물/결합재로 PFA, GGBFS 및 SF 혼화제의 각기 다른 치환률을 갖도록 하였으며 미리 혼합수내에 결합재 중량당 0.1~0.3%의 염소이온을 배합수내에 혼입 포함시켜 배합되어 제조되었다. 염소이온의 측정은 7일간 양생 후 수분 추출 방법을 이용하여 측정하였다. 실험을 통해 염소이온 고정화 능력이 결합재 종류 및 치환률에 의존하고 있음을 확인하였고, 총 염소이온량의 증가는 염소이온 고정화능력을 제한하여 결론적으로 염소이온 고정화를 감소시키고 있음을 보였다. 본 연구에서 최대 30%의 치환율을 가진 PFA와 60%의 치환률을 가진 GGBFS의 경우는 OPC보다 염소이온고정화 능력이 작았으며, SF의 치환률의 증가는 고정화를 감소시키고 있음을 확인하였으며, 이는 포졸란계 재료의 잠재 수화반응 혹은 공극수의 pH 저하등의 이유로 판단된다. 재령 7일에서의 염소이온의 고정화능력은 염해부식에 대한 저항성으로 나타내어지며, 염분을 혼입한 경우의 고정화능력의 순서는 30%PFA > 10%SF > 60%GGBFS > OPC로 나타났다. 더욱이 염소이온의 고정화 거동은 Langmuir isotherm 및 Freundlich isotherm으로 잘 표현될 수 있음을 보였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This paper studies the early-aged chloride binding capacity of various blended concretes including OPC(ordinary Portland cement), PFA(pulversied fly ash), GGBFS(ground granulated blast furnace slag) and SF(silica fume) cement paste. Cement pastes with 0.4 of a free water/binder ratio were cast with chloride admixed in mixing water, which ranged from 0.1 to 3.0% by weight of cement and different replacement ratios for the PFA, GGBFS and SF were used. The content of chloride in each paste was measured using water extraction method after 7 days curing. It was found that the chloride binding capacity strongly depends on binder type, replacement ratio and total chloride content. An increase in total chloride results in a decrease in the chloride binding, because of the restriction of the binding capacity of cement matrix. For the pastes containing maximum level of PFA(30%) and GGBFS(60%) replacement in this study, the chloride binding capacity was lower than those of OPC paste, and an increase in SF resulted in decreased chloride binding, which are ascribed to a latent hydration of pozzolanic materials and a fall in the pH of the pore solution, respectively. The chloride binding capacity at 7 days shows that the order of the resistance to chloride-induced corrosion is 30%PFA > 10%SF > 60%GGBFS > OPC, when chlorides are internally intruded in concrete. In addition, it is found that the binding behaviour of all binders are well described by both the Langmuir and Freundlich isotherms.
      번역하기

      This paper studies the early-aged chloride binding capacity of various blended concretes including OPC(ordinary Portland cement), PFA(pulversied fly ash), GGBFS(ground granulated blast furnace slag) and SF(silica fume) cement paste. Cement pastes with...

      This paper studies the early-aged chloride binding capacity of various blended concretes including OPC(ordinary Portland cement), PFA(pulversied fly ash), GGBFS(ground granulated blast furnace slag) and SF(silica fume) cement paste. Cement pastes with 0.4 of a free water/binder ratio were cast with chloride admixed in mixing water, which ranged from 0.1 to 3.0% by weight of cement and different replacement ratios for the PFA, GGBFS and SF were used. The content of chloride in each paste was measured using water extraction method after 7 days curing. It was found that the chloride binding capacity strongly depends on binder type, replacement ratio and total chloride content. An increase in total chloride results in a decrease in the chloride binding, because of the restriction of the binding capacity of cement matrix. For the pastes containing maximum level of PFA(30%) and GGBFS(60%) replacement in this study, the chloride binding capacity was lower than those of OPC paste, and an increase in SF resulted in decreased chloride binding, which are ascribed to a latent hydration of pozzolanic materials and a fall in the pH of the pore solution, respectively. The chloride binding capacity at 7 days shows that the order of the resistance to chloride-induced corrosion is 30%PFA > 10%SF > 60%GGBFS > OPC, when chlorides are internally intruded in concrete. In addition, it is found that the binding behaviour of all binders are well described by both the Langmuir and Freundlich isotherms.

      더보기

      참고문헌 (Reference)

      1 Mohammed, T.U., "between free chloride and total chloride contents in concrete" 33 : 1487-1490, 2003

      2 Hansson, C.M., "The threshold concentration of chloride in concrete for initiation of reinforcement corrosion;In: Corrosion Rates of Steel in Concrete" ASTM 3-16, 1988

      3 Glass, G.K., "The presentation of the chloride threshold level for corrosion of steel in concrete" 39 : 1001-1013, 1997

      4 Xu, Y., "The influence of sulphates on chloride binding and pore solution chemistry" 27 : 1841-1850, 1997

      5 Page, C.L., "The influence of different cements on chloride-induced corrosion of reinforcing steel" 16 : 79-86, 1986

      6 Glass, G.K., "The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete" 42 : 329-344, 2000

      7 Ann, K.Y., "The influence of calcium nitrite on the initiation of chloride-induced corrosion of steel in concrete;n: Concrete under Sever Condition" Consec 287-296, 2004

      8 Suryavanshi, A.K., "The binding of chloride ions by sulphate resistant Portland cement" 25 : 581-592, 1995

      9 Sandberg, P., "Studies of chloride binding in concrete exposed in a marine environment" 29 : 473-477, 1999

      10 Sandberg, P., "Studies of chloride binding in concrete exposed in a marine environment" 29 : 473-477, 1999

      1 Mohammed, T.U., "between free chloride and total chloride contents in concrete" 33 : 1487-1490, 2003

      2 Hansson, C.M., "The threshold concentration of chloride in concrete for initiation of reinforcement corrosion;In: Corrosion Rates of Steel in Concrete" ASTM 3-16, 1988

      3 Glass, G.K., "The presentation of the chloride threshold level for corrosion of steel in concrete" 39 : 1001-1013, 1997

      4 Xu, Y., "The influence of sulphates on chloride binding and pore solution chemistry" 27 : 1841-1850, 1997

      5 Page, C.L., "The influence of different cements on chloride-induced corrosion of reinforcing steel" 16 : 79-86, 1986

      6 Glass, G.K., "The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete" 42 : 329-344, 2000

      7 Ann, K.Y., "The influence of calcium nitrite on the initiation of chloride-induced corrosion of steel in concrete;n: Concrete under Sever Condition" Consec 287-296, 2004

      8 Suryavanshi, A.K., "The binding of chloride ions by sulphate resistant Portland cement" 25 : 581-592, 1995

      9 Sandberg, P., "Studies of chloride binding in concrete exposed in a marine environment" 29 : 473-477, 1999

      10 Sandberg, P., "Studies of chloride binding in concrete exposed in a marine environment" 29 : 473-477, 1999

      11 ASTM C 1218, "Standard test method for water-soluble chloride in mortar and concrete American Society for Testing and Materials"

      12 Song, H. W., "Service life prediction of concrete structures under marine environment considering coupled deterioration" 12 (12): 265-284, 2006

      13 Glass, G.K., "Reinforced concrete-The principles of its deterioration and repair ; In Modern Matters-Principles and Practice in Conserving Recent Architecture" Donhead Publishing 101-112, 1996

      14 Neville, A.M., "Properties of Concrete" Longman Group Ltd 1995

      15 Glass, G.K., "Process for the protection of reinforcement in reinforced concrete" 2001

      16 Byfors, K., "Pore solution expression as a method to determine the influence of mineral additives on chloride binding" 16 : 760-770, 1986

      17 British Standard 8110, "Part 1. Structural use of concrete - Code of practice for design and construction"

      18 Glass, G.K., "Neural network modelling of chloride binding" 49 : 323-335, 1997

      19 Suryavanshi, A.K., "Mechanism of Friedel's salt formation in cements rich in tri-calcium aluminate" 26 : 717-727, 1996

      20 Lambert, P., "Investigations of reinforcement corrosion.2.Electrochemical monitoring of steel in chloride-contaminated concrete" 24 : 351-358, 1991

      21 Breit, W., "Investigation on the threshold value of the critical chloride content;In: 4th CANMET/ACI Conference on Durability of Concrete" ACI 363-372, 1997

      22 Arya, C., "Factors influencing chloride-binding in concrete" 20 : 291-300, 1990

      23 Song, H. W., "Factors influencing chloride transport in concrete structures exposed to a marine environment" 30 : 113-121, 2008

      24 Hussain, S.E., "Factors affecting threshold chloride for reinforcement corrosionin concrete" 25 : 1543-1555, 1995

      25 Arya C., "Effect of cement type on chloride binding and corrosion of steel in concrete" 25 : 893-902, 1995

      26 Page, C.L., "Diffusion of chloride ions in hardened cement pastes" 11 : 395-406, 1981

      27 Sergi, G., "Diffusion of chloride and hydroxyl ions in cementitious materials exposed to a saline environment" 44 : 63-69, 1992

      28 Dhir, R.K., "Development of chloride-resisting concrete using fly ash" 78 : 137-142, 1999

      29 Song, H. W., "Development of chloride binding capacity in cement pastes and the influencing of the pH of hydration products" 2008

      30 Hussain, S.E., "Corrosion resistance performance of fly ash blended cement concrete" 91 : 264-273, 1994

      31 Glass, G.K., "Corrosion inhibition in concrete arising from its acid neutralisation capacity" 42 : 1587-1598, 2000

      32 Thomas Telford, "Condensed Silica Fume in Concrete: State of Art Report" FIP 1988

      33 Song, H. W., "Chloride threshold value for steel corrosion in concrete considering the buffering capacity against a fall in the pH" 2008

      34 Song, H.W., "Chloride threshold level for steel corrosion in concrete" 49 : 4113-4133, 2007

      35 Tritthart, J., "Chloride binding: “II The influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding" 19 : 683-691, 1989

      36 Song, H. W., "Chloride binding isotherms in cement paste containing various binders" 109-114, 2006

      37 Dhir, R.K., "Chloride binding in GGBS concrete" 26 : 1767-1773, 1996

      38 Delagrave, A., "Chloride binding capacity of various hydrated cement paste systems" 6 : 28-35, 1997

      39 Ann, K.Y., "Build-up of surface chloride and its influence on corrosion initiation time of steel in concrete" 265-274, 2006

      40 Arya, C., "Assessment of simple methods of determining the free chloride ion content of cement paste" 17 : 907-918, 1987

      41 Ary, C., "An assessment of four methods of determining the free chloride content of concrete" 23 : 319-330, 1990

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2012-01-26 학회명변경 영문명 : Journal Of The Korea Institute For Structural Maintenance Inspection -> The Korea Institute For Structural Maintenance and Inspection KCI등재
      2012-01-19 학술지명변경 한글명 : 구조물진단학회지 -> 한국구조물진단유지관리공학회 논문집
      외국어명 : Journal of The Korea Institute for Structural Maintenance Inspection -> Journal of The Korea Institute for Structural Maintenance and Inspection
      KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-08-13 학회명변경 한글명 : 한국구조물진단학회 -> 한국구조물진단유지관리공학회 KCI등재
      2007-04-11 학회명변경 한글명 : (사)한국구조물진단학회 -> 한국구조물진단학회 KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.36 0.36 0.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.28 0.27 0.496 0.13
      더보기

      연관 공개강의(KOCW)

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼